Лауреат нобелевской премии по физике. Нобелевскую премию по физике присудили японцу и канадцу, доказавшим, что у нейтрино есть масса

💖 Нравится? Поделись с друзьями ссылкой

Надо добавить, что все эти первоначальные свидетельства в пользу нейтринных осцилляций были получены в «экспериментах по исчезновению». Это эксперименты такого типа, когда мы измеряем поток, видим, что он слабее, чем ожидалось, и догадываемся, что искомые нейтрино превратились в другой сорт. Для большей убедительности нужно тот же процесс увидеть и напрямую, через «эксперимент по возникновению» нейтрино. Такие эксперименты сейчас тоже ведутся, и их результаты согласуются с экспериментами по исчезновению. Например, в ЦЕРНе есть специальная ускорительная линия, которая «стреляет» мощным пучком мюонных нейтрино в направлении итальянской лаборатории Гран-Сассо, находящейся за 732 км от нее. Установленный в Италии детектор OPERA ищет в этом потоке тау-нейтрино. За пять лет работы OPERA поймала уже пять тау-нейтрино, так что это окончательно доказывает реальность обнаруженных ранее осцилляций.

Акт второй: солнечная аномалия

Вторая загадка нейтринной физики, требовавшая разрешения, касалась солнечных нейтрино . Нейтрино рождаются в центре Солнца в ходе термоядерного синтеза, они сопровождают те реакции, за счет которых Солнце и светит. Благодаря современной астрофизике мы хорошо знаем, что должно происходить в центре Солнца, а значит, можем вычислить темп производства там нейтрино и их поток, попадающий на Землю. Измерив этот поток в эксперименте (рис. 6), мы тем самым сможем впервые заглянуть прямо в центр Солнца и проверить, насколько хорошо мы понимаем его устройство и работу.

Эксперименты по регистрации солнечных нейтрино проводятся с 1960-х годов; часть Нобелевской премии по физике за 2002 год ушла как раз за эти наблюдения. Поскольку энергия солнечных нейтрино маленькая, порядка МэВ и меньше, нейтринный детектор не может определить их направление, а лишь фиксирует количество событий ядерных превращений, вызванных нейтрино. И здесь тоже сразу же возникла и постепенно крепла проблема. Например, эксперимент Homestake , проработавший около 25 лет, показал, что, несмотря на флуктуации, регистрируемый им поток в среднем в три раза меньше предсказанного астрофизиками. Эти данные были в 90-х годах подтверждены и другими экспериментами, в частности Gallex и SAGE .

Уверенность в том, что детектор работает правильно, была настолько велика, что многие физики склонялись к тому, что астрофизические теоретические предсказания где-то дают сбой - уж слишком сложные процессы идут в центре Солнца. Однако астрофизики уточняли модель и настаивали на надежности предсказаний. Таким образом, проблема не исчезала и требовала объяснения.

Конечно, и здесь теоретики уже давно думали о нейтринных осцилляциях. Предполагалось, что на пути из солнечных недр часть электронных нейтрино превращается в мюонные или тау. А поскольку эксперименты типа Homestake и GALLEX в силу своего устройства ловят исключительно электронные нейтрино, то они их и недосчитываются. Более того, в 70-80-х годах теоретики предсказали, что нейтрино, распространяющееся внутри Солнца, должно осциллировать слегка иначе, чем в вакууме (это явление получило название эффекта Михеева–Смирнова–Вольфенштейна), что тоже могло бы помочь с объяснением солнечной аномалии.

Чтобы разрешить проблему солнечных нейтрино, требовалось сделать простую, казалось бы, вещь: построить такой детектор, который смог бы улавливать полный поток всех типов нейтрино, а также, отдельно, поток нейтрино электронных. Именно тогда можно будет убедиться, что нейтрино, произведенные внутри Солнца, не исчезают, а просто меняют свой сорт. Но из-за малости энергии нейтрино это было проблематично: ведь они не могут превратиться в мюон или тау-лептон. Значит, искать их надо как-то иначе.

Детектор Super-Kamiokande попробовал справиться с этой задачей, используя упругое рассеяние нейтрино на электронах атома и регистрируя ту отдачу, которую получает электрон. Такой процесс, в принципе, чувствителен к нейтрино всех сортов, но из-за особенностей слабого взаимодействия подавляющий вклад в него дает электронное нейтрино. Поэтому чувствительность к полному нейтринному потоку оказалась слабой.

И вот здесь решающее слово сказал другой нейтринный детектор, SNO. В нем, в отличие от Super-Kamiokande, использовалась не обычная, а тяжелая вода, содержащая дейтерий. Ядро дейтерия - дейтрон - это слабо связанная система протона и нейтрона. От удара нейтрино с энергией несколько МэВ дейтрон может развалиться на протон и нейтрон: \(\nu + d \to \nu + p + n\). Такой процесс, вызванный нейтральной компонентой слабого взаимодействия (переносчик - Z-бозон), имеет одинаковую чувствительность к нейтрино всех трех типов, а регистрируется он легко по захвату нейтрона ядрами дейтерия и высвечиванию гамма-кванта. Кроме того, SNO отдельно может регистрировать и чисто электронные нейтрино по расщеплению дейтрона на два протона, \(\nu_e + d \to e + p + p\), которое происходит за счет заряженной компоненты слабых взаимодействий (переносчик - W-бозон).

Коллаборация SNO начала набирать статистику в 1998 году, и, когда данных накопилось достаточно, она в двух публикациях, 2001-го и 2002 года, представила результаты измерения полного нейтринного потока и его электронной компоненты (см.: Measurement of the Rate of ν e +d p +p +e B и ). И как-то всё вдруг встало на свои места. Полный поток нейтрино действительно совпал с тем, что предсказывала солнечная модель. Электронная часть действительно составляла всего лишь треть от этого потока, в согласии с более ранними многочисленными экспериментами прошлого поколения. Таким образом, никуда солнечные нейтрино не потерялись - просто, родившись в центре Солнца в форме электронных нейтрино, они действительно на пути к Земле перешли в нейтрино другого сорта.

Акт третий, продолжающийся

Тогда, на рубеже веков, проводились и другие нейтринные эксперименты. И хотя физики давно подозревали, что нейтрино осциллируют, именно Super-Kamiokande и SNO представили неопровержимые аргументы - в этом их научная заслуга. После их результатов в нейтринной физике как-то разом произошел фазовый переход: мучавшие всех проблемы исчезли, а осцилляции стали фактом, предметом экспериментальных исследований, а не только теоретических рассуждений. Нейтринная физика прошла через стадию взрывообразного роста, и сейчас это одна из самых активных областей физики элементарных частиц. В ней совершаются регулярно новые открытия, по всему миру запускаются новые экспериментальные установки - детекторы атмосферных, космических, реакторных, ускорительных нейтрино, - а тысячи теоретиков пытаются найти в измеренных параметрах нейтрино намеки на Новую физику.

Не исключено, что рано или поздно удастся именно в таком поиске нащупать некую теорию, которая придет на смену Стандартной модели, свяжет воедино несколько наблюдений и позволит естественным способом объяснить и нейтринные массы и осцилляции, и темную материю, и происхождение асимметрии между веществом и антивеществом в нашем мире, и другие загадки. То, что нейтринный сектор стал ключевым игроком этого поиска, - во многом заслуга Super-Kamiokande и SNO.

Источники:
1) Super-Kamiokande Collaboration. Evidence for Oscillation of Atmospheric Neutrinos // Phys. Rev. Lett. V. 81. Published 24 August 1998.
2) SNO Collaboration. Measurement of the Rate of ν e +d p +p +e − Interactions Produced by 8 B Solar Neutrinos at the Sudbury Neutrino Observatory // Phys. Rev. Lett. V. 87. Published 25 July 2001.
3) SNO Collaboration. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory // Phys. Rev. Lett. V. 89. Published 13 June 2002.

Каждую секунду сквозь наше тело пролетают тысячи миллиардов нейтрино, но мы их не чувствуем и не видим. Нейтрино проносятся в космическом пространстве практически со скоростью света, но при этом почти не взаимодействуют с материей. Часть нейтрино возникли еще в момент Большого взрыва, другие постоянно рождаются в результате разнообразных процессов, происходящих в космосе и на Земле, — от взрывов сверхновых и гибели крупных звезд до реакций, протекающих на атомных электростанциях. Даже внутри нашего тела каждую секунду рождается около 5 тыс. нейтрино — это происходит при распаде изотопа калия.

Большая часть тех нейтрино, которые достигают Земли, рождается внутри Солнца, из-за происходящих внутри него ядерных реакций.

После частиц света — фотонов — нейтрино являются самыми распространенными частицами в нашей Вселенной.

В течение длительного времени ученые не были уверены в существовании нейтрино. Когда австрийский физик Вольфганг Паули (который стал лауреатом Нобелевской премии по физике 1945 года) предсказал существование этой частицы, с его стороны это была всего лишь попытка объяснить выполнение закона сохранения энергии при бета-распаде нейтрона на протон и электрон.

Вскоре итальянец Энрико Ферми (нобелевский лауреат 1938 года) сформулировал теорию, которая включала в себя предложенную Паули легкую нейтральную частицу, назвав ее «нейтрино».

Тогда никто не предполагал, что эта крошечная частица произведет революцию как в физике, так и в изучении космоса.

До экспериментального подтверждения существования нейтрино прошла почти четверть века — это стало возможным лишь в 1950-х годах, когда нейтрино стали испускаться появлявшимися атомными электростанциями. В июне 1956 года два американских физика — Фредерик Райнес (нобелевский лауреат 1995 года) и Клайд Кован — отправили Вольфгангу Паули телеграмму, в которой сообщали, что их детектору удалось зафиксировать следы нейтрино. Это открытие окончательно доказало: призрачный нейтрино, который иногда называли «полтергейстом», — реальная частица.

Загадка на полвека

Вопрос о природе нейтрино возник после экспериментов Раймонда Дэвиса, основанных на хлор-аргонном методе, предложенном советско-итальянским физиком Бруно Понтекорво. Механизм рождения их на Солнце давно был известен, термоядерные реакции и их выход, необходимый для того, чтобы Солнце «грело», был просчитан в уравнениях.

Но эксперимент показал, что на деле от Солнца приходит лишь примерно треть от количества предсказанных частиц. Этот парадокс стоял перед учеными почти полвека, объяснений было несколько. Одно из них (оказавшееся правильным, состоявшее в том, что нейтрино может превращаться из одного сорта в другой) предложил как раз Понтекорво в 1957 году.

Бруно Максимович Понтекорво выдвинул теорию нейтринных осцилляций в 1957 году. Источник: museum.jinr.ru

Шесть лет спустя в том числе и за эту работу ученый получил Ленинскую премию.

«Теоретики не могли ничего подвинуть в своих уравнения термоядерных реакций, а значит, нейтрино либо исчезали, либо во что-то превращались», — говорит доктор физико-математических наук Андрей Ростовцев, специалист в области элементарных частиц.

Окончательно решить полувековую загадку смог грандиозный японский эксперимент Super-Kamiokande. Он представлял собой гигантскую бочку под землей, заполненную дистиллированной водой и пронизанную тысячами детекторов черенковского излучения, на которых сегодня основаны все существующие нейтринные телескопы. При бомбардировке космическими частицами земной атмосферы рождается множество вторичных частиц, в том числе нейтрино, в основном мюонные. «В этом эксперименте физики научились мерить и электронные, и мюонные нейтрино, но самое главное — они знали направление прихода этих частиц. И зная расстояние до точки, где первичная частица вошла в атмосферу, они видели, как меняется соотношение мюонных и электронных частиц в зависимости от пройденного ими расстояния.

То есть они увидели осцилляционную картину: если в какой-то точке родилось мюонное нейтрино, то можно сказать, сколько электронных и мюонных нейтрино будет в потоке через километр», — пояснил Ростовцев.

Лауреаты Нобелевской премии по физике 2015 года Такааки Кадзита (слева) и Артур Макдональд. Источник: nobelprize.org

На Super-Kamiokande работал японец Такааки Кадзита, ставший во вторник лауреатом Нобелевской премии. Второй лауреат — Артур Макдональд, руководитель аналогичного низкофонового канадского эксперимента SNO (Sudbury Neutrino Observatory). Если японский эксперимент ловил высокоэнергичные нейтрино энергий выше 1 ГэВ, то канадский фиксировал менее энергичные частицы, приходившие от Солнца.

Детектор нейтрино на установке Sudbury Neutrino Observatory. Источник: A.B. McDonald (Queen"s University)/The Sudbury Neutrino Observatory Institute

Опыты показали, что раз нейтрино превращаются друг в друга, то они имеют массу, причем каждое поколение — свою. Сегодня на эти массы установлены лишь верхние пределы, а вероятность осцилляции пропорциональна разнице между квадратами масс.

«Я бы не сказал, что это было революцией в понимании мира, но эти ученые расширили Стандартную модель — большой набор параметров, о природе которых мы не знаем. Зачем нейтрино нужно осциллировать, никто не знает, как никто не знает и природу Стандартной модели. Премия заслуженная, ведь после экспериментов Дэвиса эта проблема стояла перед экспериментаторами как проблема бозона Хиггса. Это эпохальные эксперименты, поэтому премия нашла своих героев», — считает физик.

Предсказатели выполнили задачу-минимум

Ранее компанией Thomson Reuters кандидатами на получение Нобелевской премии по физике 2015 года Пол Коркум и Ференц Кауш за вклад в развитие аттосекундной физики. Среди потенциальных кандидатов также назывались Дебора Джин, получившая первый фермионный конденсат, и Чжун Линь Ван, изобретатель пьезотронного наногенератора.

Впрочем, один из нынешних лауреатов — Артур Макдональд — входил в список лауреатов на «Нобеля» в 2007 году, поэтому .

В 2014 году за разработку голубых оптических диодов японские ученые.

Самая успешная для СССР/России

Среди отечественных деятелей науки и культуры самыми успешными в плане получения Нобелевских премий являются именно физики.

В 1958 году премию получили Павел Черенков, Игорь Тамм и Илья Франк «за открытие и интерпретацию эффекта Черенкова». Через четыре года лауреатом стал Лев Ландау «за пионерские теории в области физики конденсированного состояния, в особенности жидкого гелия». Еще через два года Нобелевский комитет отметил Николая Басова и Александра Прохорова «за фундаментальные работы в области квантовой электроники, которые привели к созданию осцилляторов и усилителей, основанных на мазерно-лазерном принципе». В 1978 году Петр Капица получил награду «за основополагающие изобретения и открытия в области физики низких температур».

В 2000-м лауреатом стал Жорес Алферов «за разработку полупроводниковых гетероструктур, используемых в высокоскоростной и оптической электронике». В 2003 году Нобелевскую премию вручили Алексею Абрикосову и Виталию Гинзбургу «за пионерский вклад в теорию сверхпроводимости и сверхтекучести».

Наконец, в 2010 году имеющий российский паспорт, но работающий в Англии Константин Новоселов стал самым молодым в истории лауреатом Нобелевской премии за открытие графена вместе с выходцем из России Андреем Геймом.

С учетом нынешнего года лауреатами Нобелевской премии по физике стали 200 ученых.

Размер Нобелевской премии в 2015 году составит 8 млн шведских крон, что составляет $960 тыс.

В среду будут названы лауреаты Нобелевской премии по химии.

  • Физика
  • Нобелевская премия 2015 года вручена за “открытие нейтринных осцилляций, которые доказывают, что нейтрино обладает массой”

    В 1998 году Такааки Каджиита (Takaaki Kajita), участник в то время коллаборации Super-Kamiokande, представил данные, демонстрирующие исчезновение атмосферных мю-нейтрино, то есть нейтрино, образованных при прохождении космических лучей через атмосферу, на пути их полета к детектору. В 2001 году Артур Б. Макдональд (Arthur B. McDonald), руководитель Sudbury Neutrino Observatory (SNO) Collaboration, опубликовал доказательства превращения солнечных электронных нейтрино в мю- и тау-нейтрино. Эти открытия имели большое значение и ознаменовали прорыв в физике элементарных частиц. Нейтринные осцилляции и взаимосвязанные вопросы природы нейтрино, массы нейтрино и возможности нарушения симметрии зарядового соотношения лептонов – это важнейшие на сегодняшний день вопросы космологии и физики элементарных частиц.

    Мы живем в мире нейтрино. Тысячи миллиардов нейтрино “протекают” через наше тело каждую секунду. Их нельзя увидеть и нельзя почувствовать. Нейтрино проносятся через пространство почти со скоростью света и практически не взаимодействуют с веществом. Существует огромное количество источников нейтрино как в космосе, так и на Земле. Часть нейтрино родилась в результате Большого Взрыва. А сейчас источники нейтрино - это и взрывы супер новых звезд, и распад звездных супергигантов, а также радиоактивные реакции на атомных электростанция и процессы естественного радиоактивного распада в природе. Таким образом, нейтрино это вторые по численности элементарные частицы после фотонов, частиц света. Но несмотря на это, долгое время их существование не было определено.

    Возможность существования нейтрино была предложена австрийским физиком Вольфгангом Паули как попытка объяснить превращение энергии при бета-распаде (вид радиоактивного распада атома с излучением электронов). В декабре 1930 года он предположил, что часть энергии забирает с собой электрически нейтральная, слабовзаимодействующая частица с очень малой массой (возможно, безмассовая). Сам Паули верил в существование такой частицы, но вместе с тем, он понимал как трудно обнаружить частицу с такими параметрами методами экспериментальной физики. Он писал об этом: “Я совершил ужасную вещь, я постулировал существование частицы, которая не может быть обнаружена“. В скором времени, после открытия в 1932 году массивной, сильновзаимодействующей частицы, похожей на протон, но только нейтральной (часть атома - нейтрон) итальянский физик Энрико Ферми предложил неуловимую элементарную частицу Паули назвать – нейтрино.

    Возможность обнаружить нейтрино появилась только в конце 50х годов, когда было построено большое количество атомных электростанций и поток нейтрино значительно возрос. В 1956 году Ф. Райнс (также в последствии лауреат Нобелевской премии 1995 года) провел эксперимент по реализации идеи советского физика Б.М. Понтекорво по детектированию нейтрино и антинейтрино на ядерном реакторе в Южной Королине. В результате он отправил телеграмму Вольфгангу Паули (всего за год до его смерти), в которой сообщал, что нейтрино оставили следы в их детекторе. А уже в 1957 году Б.М. Понтекорво опубликовал ещё одну пионерскую работу по нейтрино, в которой первым выдвинул идею осцилляций нейтрино.
    С 60х годов ученые активно стали развивать новое научное направление – нейтринную астрономию. Одна из задач состояла в том, чтобы подсчитать количество нейтрино, родившихся в результате ядерных реакций на Солнце. Но попытки зарегистрировать расчетное количество нейтрино на Земле показывали, что отсутствует примерно две третьих нейтрино! Конечно, могли быть ошибки в произведенных расчетах. Но одно из возможных решений заключалось в том, что часть нейтрино изменяли свой тип. В соответствии с действующей сегодня в физике элементарных частиц Стандартной Моделью (рисунок 1), существует три типа нейтрино – электронные нейтрино, мю-нейтрино и тау-нейтрино.

    Рисунок 1 - Станда́ртная моде́ль - теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Стандартная модель не является теорией всего, так как не описывает тёмную материю, тёмную энергию и не включает в себя гравитацию. Содержит 6 лептонов (электрон, мюон, тау-лептон, электронное нейтрино, мюонное нейтрино и тау-нейтрино), 6 кварков (u, d, s, c, b, t) и 12 соответствующих им античастиц. (http://elementy.ru/LHC/HEP/SM)

    Каждому типу нейтрино соответствует его заряженный партнер – электрон, и две других более тяжелых, обладающих меньшим временем жизни частицы - мюон и тау-лептон. В результате ядерных реакций на Солнце происходит рождение только электронных нейтрино и недостающие нейтрино могли бы быть найдены, если бы по пути на Землю электронные нейтрино могли превращаться в мю-нейтрино и тау-нейтрино.

    Поиски нейтрино глубоко под землей

    Поиск нейтрино ведется непрерывно, днем и ночью, на установках колоссального размера, построенных глубоко под землей для экранирования посторонних шумов, создаваемых космическим излучением и спонтанными радиоактивными реакциями в окружающей среде. Очень тяжело отличить сигналы нескольких настоящих солнечных нейтрино от миллиардов ложных.

    Нейтронная обсерватория Super-Kamiokande построена в 1996 году под горой Kamioka в 250 км на северо-запад от Токио. Другая обсерватория Sudbury Neutrino Observatory (SNO) была построена в 1999 году в никелевом руднике вблизи Онтарио.


    Рисунок 2 – Super-Kamiokande – это детектор атмосферных нейтрино. Когда нейтрино взаимодействует с водой, образуется электрически заряженная частица. Это приводит к возникновению излучения Черенкова-Вавилова, которое регистрируется детекторами света. Форма и интенсивность спектра излучения Черенкова-Вавилова позволяет определить тип частицы и откуда она прилетела.

    Super-Kamiokande – это гигантский детектор, построенный на глубине 1000 метров. Он состоит из бака размерами 40 на 40 метров, заполненного 50 000 тонн воды. Вода в баке такой чистоты, что свет может пройти расстояние в 70 метров, прежде чем его интенсивность уменьшится в два раза. В обычном бассейне для плавания это расстояние составляет всего пару метров. По сторонам бака, на его верхней и нижней частях расположено 11 000 детекторов света, позволяющие зарегистрировать малейшую вспышку света в воде. Большое количество нейтрино проходит сквозь бак с водой, но только некоторые из них взаимодействуют с атомами и/или электронами с образованием электрически заряженных частиц. Мюон образуются из мю-нейтрино и электроны из электронных нейтрино. Вокруг образованных заряженных частиц образуются вспышки голубого света. Это, так называемое, излучение Черенкова-Вавилова, которое возникает при движении заряженных частиц со скоростью, превышающей скорость света в данной среде. И это не противоречит теории Эйнштейна, которая гласит, что ничто не может двигаться со скоростью выше скорости света в вакууме. В воде скорость света составляет только 70 % от скорости света в вакууме и, поэтому, может перекрыта скоростью движения заряженной частицы.

    При прохождении космического излучения через слои атмосферы рождается большое количество мю-нейтрино, которым необходимо пройти до детектора путь лишь в несколько десятков километров. Super-Kamiokande может детектировать мю-нейтрино приходящие прямо из атмосферы, а также те нейтрино, которые попадают на детектор с обратной стороны, проходя сквозь всю толщу земного шара. Ожидалось, что количество мю-нейтрино детектируемых в двух направлениях будет одинаковым, ведь толща земли не представляет для нейтрино какой-либо преграды. Однако, количество нейтрино попадающих на Super-Kamiokande прямо из атмосферы было значительно больше. Количество же электронных нейтрино приходящих в обоих направлениях не отличалось. Получается, что та часть мю-нейтрино, которая проходила больший путь сквозь толщу земли, скорее всего превращалась каким-то образом в тау-нейтрино. Однако, зарегистрировать данные превращения напрямую в обсерватории Super-Kamiokande было невозможно.

    Чтобы получить окончательный ответ на вопрос о возможности нейтринных превращений или нейтринных осцилляций был реализован еще один эксперимент во второй нейтринной обсерватории Sudbury Neutrino Observatory (рисунок 3). Она была построена на глубине 2000 метров под землей и оснащена 9500 детекторов света. Обсерватория предназначена для детектирования именно солнечных нейтрино, энергия которых значительно меньше, чем рожденных в слоях атмосферы. Бак заполнялся не просто очищенной водой, а тяжелой водой, в которой каждый атом водорода в молекуле воды имеет дополнительный нейтрон. Таким образом, вероятность взаимодействия нейтринно с тяжелыми атомами водорода значительно выше. Кроме того, наличие тяжелых ядер позволяет нейтрино взаимодействовать с протеканием других ядерных реакций, а следовательно, будут наблюдаться световые вспышки другой интенсивности. Некоторые типы реакций позволяют детектировать все типы нейтрино, но к сожалению, не позволяют точно отличить один тип от другого.


    Рисунок 3 – Sudbury Neutrino Observatory – это детектор солнечных нейтрино. Реакции между тяжелыми ядрами водорода и нейтрино дают возможность регистрировать как только электронные нейтрино, так и все типы нейтрино одновременно. (иллюстрации 2 и 3 с сайта нобелевского комитета nobelprize.org и шведской академии наук kva.se)

    После начала эксперимента обсерватория детектировала 3 нейтрино в день из 60 миллиардов нейтрино через 1 см2, прилетающих на Землю от Солнца. И все равно это было в 3 раза меньше расчетного количества электронных солнечных нейтрино. Суммарное же количество всех типов нейтрино, задетектированных в обсерватории, с высокой точностью соответствовало ожидаемому числу нейтрино, испускаемых Солнцем. Обобщение экспериментальных результатов двух нейтринных обсерваторий, теории предложенной Понтекорво о принципиальной возможности нейтринных осцилляций позволило доказать существование нейтринных превращений на пути от Солнца на Землю. В этих двух обсерваториях Super-Kamiokande и Sudbury Neutrino Observatory впервые были получены описанные результаты и в 2001 году предложена их интерпретация. Чтобы окончательно убедиться в правильности проведенных экспериментов, спустя год, в 2002 году начался эксперимент KamLAND (Kamioka Liquid scintillator AntiNeutrino Detector), в котором в качестве источника нейтронов использовали реактор. Спустя несколько лет, после накопления достаточной статистики, результаты по превращению нейтрино были подтверждены с высокой точностью.

    Чтобы объяснить механизм нейтринных превращений или нейтринных осцилляций ученые обратились к классической теории квантовой механики. Эффект превращения электронных нейтрино в мю- и тау-нейтрино предполагает с точки зрения квантовой механики наличие у нейтрино массы, иначе данный процесс невозможен даже теоретически. В квантовой механике частице определенной массы соответствует волна определенной частоты. Нейтрино представляют собой суперпозицию волн, которые и соответствуют нейтрино различного типа с различной массой. Когда волны софазны невозможно отличить один тип нейтрино от другого. Но за значительное время движения нейтрино от Солнца до Земли может происходить дефазировка волн и потом возможна их последующая суперпозиция другим образом. Тогда и становится возможным отличить один тип нейтрино от другого. Такие своеобразные изменения происходят из-за того, что различные типы нейтрино имеют различные массы, но отличающиеся на очень малую величину. Масса нейтрино оценивается в миллионы раз меньше, чем масса электрона – это ничтожна малая величина. Однако, за счет того, что нейтрино весьма распространенная частица, сумма масс всех нейтрино приблизительно равна массе всех видимых звезд.

    Не смотря на такие успехи физиков многие вопросы остаются до сих пор нерешенными. Почему нейтрино такие легкие? Существуют ли другие типы нейтрино? Почему нейтрино так сильно отличаются от других элементарных частиц? Эксперименты продолжаются и есть надежда, что они позволят узнать новые свойства нейтрино и, таким образом, приблизить нас к понимаю истории, структуры и будущего Вселенной.

    Подготовлено по материалам с сайта nobelprize.org.

    Популярная литература и ресурсы

    Физики, лауреаты Нобелевской премии 2015 , открыли явление, несовместимое с общепринятой Стандартной Моделью элементарных частиц . Независимо друг от друга они экспериментально подтвердили, что нейтрино имеет массу . Хиггсовский механизм образования масс элементарных частиц не может объяснить это явление. По Стандатной Модели нейтрино не должно иметь массу .

    Возникает много вопросов, открывается широкое поле для новых исследований.

    Еще в 60-е годы прошлого столетия Бруно Понтекорво , знаменитый итальянский и советский (иммигрировал в СССР в 1950 году) физик , работавший в Объединенном институте ядерных исследований в Дубне , предположил, что нейтрино обладает массой, и предложил идею экспериента для проверки этой гипотезы. Доказательством наличия массы у нейтрино может служить наблюдение их осцилляций. Осцилляции - это повторяющиеся процессы состояния системы.

    Для нейтрино - это повторяющееся превращение трех разновидностей нейтрино (электронного, мюонного и тау-нейтрино) друг в друга. Из теории следовало, что продолжительность периодов осцилляций определяется разностью квадратов масс нейтрино, переходящих из одного вида в другой. Считалось,что наименьшая масса у электронного нейтрино, у мюонного чуть больше, у тау-нейтрино - еще больше. Наблюдая осцилляции, можно оценить разность квадратов масс и этим доказать, что массы у нейтрино существуют, но в этом эксперименте значение масс каждого вида нейтрино в отдельности оценить невозможно.

    Лауреат Нобелевской премии Артур МакДональд исследовал поток солнечных нейтрино на нейтринной обсерватории Садбери в Канаде. Потоки нейтрино от Солнца исследовались многократно на различных подземных обсерваториях мира, и всегда получалось, что наблюдаемый поток нейтрино в три раза меньше ожидаемого . Ожидаемый поток оценивался в соответствии с выходом нейтрино при термоядерных реакциях, происходящих в ядре Солнца. В результате этих реакций из Солнца истекает поток электронных нейтрино. Именно такой тип нейтрино способны были фиксировать детекторы. Уже давно предполагалось,что на пути от Солнца нейтрино могут превращаться из электронного в другие виды. Артур МакДональд смог пронаблюдать потоки всех трех видов нейтрино и показать, что в сумме они соответствуют ожидаемому. При этом было показано,что период осцилляций короче времени прохождения потока нейтрино от Солнца к Земле, и за это время большое количество электронных нейтрино успевают превратиться в мюонные и тау. Таким образом экспериментально был обнаружен процесс осцилляций и, следовательо, было подтверждено, что нейтрино обладает массой.

    Лауреат Нобелевской премии Такааки Каджита проводил наблюдения высокоэнергичных нейтрино на нейтринном телескопе Супер-Камиоканде. Нейтрино высоких энергий возникают в атмосфере Земли в результате действия космических лучей. Эксперимент заключался в сравнении потоков мюонных нетрино, попадающих на детектор непосредственно из атмосферы, с потоком нейтрино с противоположной стороны Земли, прошедшим на детектор через всю толщу Земли. Оказалось, что во втором потоке часть мюонных нейтрино перешла в электронные. Так независимо было доказано, что в потоках нейтрино происходят осцилляции, и, следовательно, нейтрино обладает массой.

    В реальности и сами процессы, и их наблюдения на много порядков сложнее описанных в этом тексте.

    Рассказать друзьям