Презентация на тему «История развития вычислительной техники. Презентация на тему история развития вычислительной техники Презентация на тему вычислительная техника

💖 Нравится? Поделись с друзьями ссылкой

Cлайд 1

Cлайд 2

Вычисления в доэлектронную эпоху ЭВМ первого поколения ЭВМ второго поколения ЭВМ третьего поколения Персональные компьютеры Современные супер-ЭВМ

Cлайд 3

Потребность счета предметов у человека возникла еще в доисторические времена. Древнейший метод счета предметов заключался в сопоставлении предметов некоторой группы (например, животных) с предметами другой группы, играющей роль счетного эталона. У большинства народов первым таким эталоном были пальцы (счет на пальцах). Расширяющиеся потребности в счете заставили людей употреблять другие счетные эталоны (зарубки на палочке, узлы на веревке и т. д.).

Cлайд 4

Каждый школьник хорошо знаком со счетными палочками, которые использовались в качестве счетного эталона в первом классе. В древнем мире при счете больших количеств предметов для обозначения определенного их количества (у большинства народов - десяти) стали применять новый знак, например зарубку на другой палочке. Первым вычислительным устройством, в котором стал применяться этот метод, стал абак.

Cлайд 5

Древнегреческий абак представлял собой посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т. д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующий разряд. Римляне усовершенствовали абак, перейдя от песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками

Cлайд 6

По мере усложнения хозяйственной деятельности и социальных отношений (денежных расчетов, задач измерений расстояний, времени, площадей и т. д.) возникла потребность в арифметических вычислениях. Для выполнения простейших арифметических операций (сложения и вычитания) стали использовать абак, а по прошествии веков - счеты.

Cлайд 7

Развитие науки и техники требовало проведения все более сложных математических расчетов, и в XIX веке были изобретены механические счетные машины - арифмометры. Арифмометры могли не только складывать, вычитать, умножать и делить числа, но и запоминать промежуточные результаты, печатать результаты вычислений и т. д.

Cлайд 8

В середине XIX века английский математик Чарльз Бэббидж выдвинул идею создания программно управляемой счетной машины, имеющей арифметическое устройство, устройство управления, а также устройства ввода и печати.

Cлайд 9

Аналитическую машину Бэббиджа (прообраз современных компьютеров) по сохранившимся описаниям и чертежам построили энтузиасты из Лондонского музея науки. Аналитическая машина состоит из четырех тысяч стальных деталей и весит три тонны.

Cлайд 10

Вычисления производились Аналитической машиной в соответствии с инструкциями (программами), которые разработала леди Ада Лавлейс (дочь английского поэта Джорджа Байрона). Графиню Лавлейс считают первым программистом, и в ее честь назван язык программирования АДА.

Cлайд 11

Программы записывались на перфокарты путем пробития в определенном порядке отверстий в плотных бумажных карточках. Затем перфокарты помещались в Аналитическую машину, которая считывала расположение отверстий и выполняла вычислительные операции в соответствии с заданной программой.

Cлайд 12

В 40-е годы XX века начались работы по созданию первых электронно-вычислительных машин, в которых на смену механическим деталям пришли электронные лампы. ЭВМ первого поколения требовали для своего размещения больших залов, так как в них использовались десятки тысяч электронных ламп. Такие ЭВМ создавались в единичных экземплярах, стоили очень дорого и устанавливались в крупнейших научно-исследовательских центрах.

Cлайд 13

В 1945 году в США был построен ENIAC (Electronic Numerical Integrator and Computer - электронный числовой интегратор и калькулятор), а в 1950 году в СССР была создана МЭСМ (Малая Электронная Счетная Машина)

Cлайд 14

ЭВМ первого поколения могли выполнять вычисления со скоростью несколько тысяч операций в секунду, последовательность выполнения которых задавалась программами. Программы писались на машинном языке, алфавит которого состоял из двух знаков: 1 и 0. Программы вводились в ЭВМ с помощью перфокарт или перфолент, причем наличие отверстия на перфокарте соответствовало знаку 1, а его отсутствие – знаку 0. Результаты вычислений выводились с помощью печатающих устройств в форме длинных последовательностей нулей и единиц. Писать программы на машинном языке и расшифровывать результаты вычислений могли только квалифицированные программисты, понимавшие язык первых ЭВМ.

Cлайд 15

В 60-е годы XX века были созданы ЭВМ второго поколения, основанные на новой элементной базе - транзисторах, которые имеют в десятки и сотни раз меньшие размеры и массу, более высокую надежность и потребляет значительно меньшую электрическую мощность, чем электронные лампы. Такие ЭВМ производились малыми сериями и устанавливались в крупных научно-исследовательских центрах и ведущих высших учебных заведениях.

Cлайд 16

В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения БЭСМ-6 (Большая Электронная Счетная Машина), которая могла выполнять 1 миллион операций в секунду.

Cлайд 17

В БЭСМ-6 использовалось 260 тысяч транзисторов, устройства внешней памяти на магнитных лентах для хранения программ и данных, а также алфавитно-цифровые печатающие устройства для вывода результатов вычислений. Работа программистов по разработке программ существенно упростилась, так как стала проводиться с использованием языков программирования высокого уровня (Алгол, Бейсик и др.).

Cлайд 18

Начиная с 70-х годов прошлого века, в качестве элементной базы ЭВМ третьего поколения стали использовать интегральные схемы. В интегральной схеме (маленькой полупроводниковой пластине) могут быть плотно упакованы тысячи транзисторов, каждый из которых имеет размеры, сравнимые с толщиной человеческого волоса.

техники


История развития вычислительной техники

ЭВМ первого поколения

ЭВМ второго поколения

ЭВМ третьего поколения

Персональные компьютеры

Современные супер-ЭВМ


Вычисления в доэлектронную эпоху

Расширяющиеся потребности в счете заставили людей употреблять другие счетные эталоны (зарубки на палочке, узлы на веревке и т. д.).


Вычисления в доэлектронную эпоху

Древнегреческий абак представлял собой посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Римляне усовершенствовали абак, перейдя от песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками


Вычисления в доэлектронную эпоху

По мере усложнения хозяйственной деятельности и социальных отношений (денежных расчетов, задач измерений расстояний, времени, площадей и т. д.) возникла потребность в арифметических вычислениях.

Для выполнения простейших арифметических операций (сложения и вычитания) стали использовать абак, а по прошествии веков - счеты.


Вычисления в доэлектронную эпоху

В XIX веке были изобретены механические счетные машины - арифмометры . Арифмометры могли не только складывать, вычитать, умножать и делить числа, но и запоминать промежуточные результаты, печатать результаты вычислений и т. д.


Вычисления в доэлектронную эпоху

В середине XIX века английский математик Чарльз Бэббидж выдвинул идею создания программно управляемой счетной машины, имеющей арифметическое устройство, устройство управления, а также устройства ввода и печати.


Вычисления в доэлектронную эпоху

Аналитическую машину Бэббиджа (прообраз современных компьютеров) по сохранившимся описаниям и чертежам построили энтузиасты из Лондонского музея науки. Аналитическая машина состоит из четырех тысяч стальных деталей и весит три тонны.


Вычисления в доэлектронную эпоху

Вычисления производились Аналитической машиной в соответствии с инструкциями (программами), которые разработала леди Ада Лавлейс. Графиню Лавлейс считают первым программистом, и в ее честь назван язык программирования АДА.


Вычисления в доэлектронную эпоху

Программы записывались на перфокарты путем пробития в определенном порядке отверстий в плотных бумажных карточках. Затем перфокарты помещались в Аналитическую машину, которая считывала расположение отверстий и выполняла вычислительные операции в соответствии с заданной программой.


ЭВМ первого поколения

В 1945 году в США был построен ENIAC (Electronic Numerical Integrator and Computer - электронный числовой интегратор и калькулятор), а в 1950 году в СССР была создана МЭСМ (Малая Электронная Счетная Машина)


ЭВМ первого поколения

ЭВМ первого поколения могли выполнять вычисления со скоростью несколько тысяч операций в секунду, последовательность выполнения которых задавалась программами

Программы вводились в ЭВМ с помощью перфокарт или перфолент, причем наличие отверстия на перфокарте соответствовало знаку 1, а его отсутствие – знаку 0.


ЭВМ второго поколения

В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения БЭСМ-6 (Большая Электронная Счетная Машина), которая могла выполнять 1 миллион операций в секунду.


ЭВМ второго поколения

В БЭСМ-6 использовалось 260 тысяч транзисторов, устройства внешней памяти на магнитных лентах для хранения программ и данных, а также алфавитно-цифровые печатающие устройства для вывода результатов вычислений.

Работа программистов по разработке программ существенно упростилась, с использованием языков программирования высокого уровня (Алгол, Бейсик и др.).


ЭВМ третьего поколения

Начиная с 70-х годов прошлого века, в качестве элементной базы ЭВМ третьего поколения стали использовать интегральные схемы. В интегральной схеме (маленькой полупроводниковой пластине) могут быть плотно упакованы тысячи транзисторов, каждый из которых имеет размеры, сравнимые с толщиной человеческого волоса.


ЭВМ третьего поколения

ЭВМ на базе интегральных схем стали гораздо более компактными, быстродействующими и дешевыми. Такие мини-ЭВМ производились большими сериями и были доступными для большинства научных институтов и высших учебных заведений.


Персональные компьютеры

Первым персональным компьютером был Арр le II («дедушка» современных компьютеров Ма cintosh), созданный в 1977 году. В 1982 году фирма IBM приступила к изготовлению персональных компьютеров I ВМ РС («дедушек» современных I ВМ-совместимых компьютеров).


Персональные компьютеры

Современные персональные компьютеры компактны и обладают в тысячи раз большим быстродействием по сравнению с первыми персональными компьютерами (могут выполнять несколько миллиардов операций в секунду). Ежегодно в мире производится почти 200 миллионов компьютеров, доступных по цене для массового потребителя.

Персональные компьютеры могут быть различного конструктивного исполнения: настольные, портативные (ноутбуки) и карманные (наладонники).


Современные супер-ЭВМ

Это многопроцессорные комплексы, которые позволяют добиться очень высокой производительности и могут применяться для расчетов в реальном времени в метеорологии, военном деле, науке и т. д.

История развития вычислительной техники

Выполнила:

учитель информатики

Школы-интерната №2 ОАО «РЖД»

Брызгалина Е.А.


V VI век до нашей эры

Древнегреческий абак


V век до нашей эры

Китайский

суан-пан

Так выглядит на соробане число 123456789


XV век нашей эры

Русский абак


Таблица 1. «Первые вычислительные машины»

Первые вычислительные машины

Ученые

(страна)

Машина Паскаля

Период времени создания машины

Возможности машины

(Германия)

Программируемая счетная машина


XVII век

Джон НЕПЕР

John Napier

( 1550 – 4.04.1617 )



XVII век

Блез ПАСКАЛЬ

Blasé Paskal

( 19.06.1623 – 19.08.1662 )



XVII век

Готфрид Вильгельм ЛЕЙБНИЦ

Gottfried Wilhelm Leibnitz

( 1.0 7 .16 46 1 4 . 11 .1 716)



XIX век

Чарльз БЭББИДЖ

Charls Babbige

(26 . 12 .1 791 1 8 . 10 .1 871)


Картонные перфокарты


СКЛАД

МЕЛЬНИЦА

КОНТОРА

БЛОК

ВВОДА

БЛОК

ПЕЧАТИ

РЕЗУЛЬТАТА

Аналитическая машина Бэббиджа


XIX век

Ада Августа БАЙРОН-КИНГ

Ada Augusta Bayron King

( 10. 12 .1815 – 27. 1 1.1 8 52 )


4 0 е года XX век

Первая электронная программируемая счетная машина


XX век

Джон (Янош) фон НЕЙМАН

John (Janos) von Neuman

(28 . 12 .1 903 8 . 02 .1 957)


1946 год

Первая ЭВМ «ЭНИАК»


ПРОЦЕССОР

УСТРОЙСТВО

УПРАВЛЕНИЯ

АРИФМЕТИКО-ЛОГИЧЕСКОЕ УСТРОЙТВО

ОПЕРАТИВНО –

ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО

УСТРОЙСТВО

ВВОДА - ВЫВОДА

Архитектура ЭВМ Дж. фон Неймана


XX век

Сергей Алексеевич ЛЕБЕДЕВ

(2 . 1 1.1 90 2 – 3. 0 7.1 97 4 )


1950 – 1951год

МЭСМ (Малая Электронная Счетная Машина)


1951 год

1953 год

Ламповый элемент СЭСМ (Специализированной Электронной Счетной Машины)

БЭСМ

(Большая Электронная Счетная Машина)


Таблица 2. «Поколения ЭВМ»

Поколение

(год)

Основа ЭВМ

Новшества

«Плюсы»

«Минусы»


1948 - 1958 года

ЭВМ первого поколения


1959 - 1967 года

ЭВМ второго поколения


1968 - 1973 года

ЭВМ третьего поколения

Первая интегральная микросхема, выпущенная компанией Texas Instruments


с 1974 года до наших дней

ЭВМ четвертого поколения

В 1971 году фирмой Intel (США) создан первый микропроцессор - программируемое логическое устройство, изготовленное по технологии СБИС



В 1981 г. IBM Corporation (International Business Machines)(США) представила первую модель персонального компьютера - IBM 5150, положившую начало эпохи современных компьютеров.


1983 г. Корпорация Apple Computers построила персональный компьютер Lisa - первый офисный компьютер, управляемый манипулятором мышь.

1984 г. Корпорация Apple Computer выпустила компьютер Macintosh на 32-разрядном процессоре Motorola 68000

Cлайд 1

Cлайд 2

Cлайд 3

Ещё 1500 лет назад для облегчения вычислений стали использовать счёты. В 1642 г. Блез Паскаль изобрёл устройство, механически выполняющее сложение чисел, 1654 -логарифмическая линейка, изобретение перфокарты, первое устройство, сделавшее вычисления быстрыми и получившее широкое распространение. а в 1694 г. Готфрид Лейбниц сконструировал арифмометр, позволяющий механически производить четыре арифметических действия, 1822-1838 - Разностная машина Чарльза Бэббиджа, первая попытка создать программируемое вычислительное устройство.

Cлайд 4

Cлайд 5

Начало развития технологий принято считать с Блеза Паскаля, который в 1642г. изобрел устройство, механически выполняющее сложение чисел. Его машина предназначалась для работы с 6-8 разрядными числами и могла только складывать и вычитать, а также имела лучший, чем все до этого, способ фиксации результата. Машина Паскаля имела размеры 36(13(8 сантиметров. Инженерные идеи Паскаля оказали огромное влияние на многие другие изобретения в области вычислительной техники.

Cлайд 6

Cлайд 7

Чарльз Бэббидж изобрел первый универсальный программируемый компьютер. В 1812 году английский математик Чарльз Бэббидж начал работать над так называемой разностной машиной, которая должна была вычислять любые функции, в том числе и тригонометрические, а также составлять таблицы. Свою первую разностную машину Бэббидж построил в 1822 году и рассчитывал на ней таблицу квадратов, таблицу значений функции y=x2+x+41 и ряд других таблиц. Однако из-за нехватки средств эта машина не была закончена. Но эта неудача не остановила Бэббиджа, и в 1834 году он приступил к новому проекту – созданию Аналитической машины, которая должна была выполнять вычисления без участия человека. С 1842 по 1848 год Бэббидж упорно работал, расходуя собственные средства. К сожалению, он не смог довести до конца работу по созданию Аналитической машины – она оказалась слишком сложной для техники того времени. Заслуга Бэббиджа в том, что он впервые предложил и частично реализовал, идею программно-управляемых вычислений. Именно Аналитическая машина по своей сути явилась прототипом современного компьютера. Эта идея и ее инженерная детализация опередили время на 100 лет!

Cлайд 8

Cлайд 9

Первый статистический табулятор был построен американцем Германом Холлеритом, с целью ускорить обработку результатов переписи населения, которая проводилась в США в 1890 г. Идея возможности использования для этих целей перфокарт принадлежала высокопоставленному чиновнику бюро переписи Джону Шоу Биллингсу (будущему тестю Холлерита). Холлерит закончил работу над табулятором к 1890 г. Затем в в бюро переписи были проведены испытания, и табулятор Холлерита в соревновании с несколькими другими системами был признан лучшим. С изобретателем был заключен контракт. После проведения переписи Холлерит был удостоен нескольких премий, и получил звание профессора в Колумбийском университете.

Cлайд 10

Cлайд 11

В 1938 году Цьюз завершил работу над прототипом электромеханического двоичного программируемого калькулятора V1 (после войны он был переименован в Z1). Эта машина могла работать с плавающей точкой и отрицательными числами.

Cлайд 12

6. Первое поколение компьютеров с архитектурой фон Неймана Память на ферритовых сердечниках. Каждый сердечник - один бит.

Cлайд 13

Первой работающей машиной с архитектурой фон Неймана стал манчестерский «Baby» - Small-Scale Experimental Machine (Малая экспериментальная машина), созданный в Манчестерском университете в 1948 году; в 1949 году за ним последовал компьютер Манчестерский Марк I, который уже был полной системой, с трубками Уильямса и магнитным барабаном в качестве памяти, а также с индексными регистрами. Другим претендентом на звание «первый цифровой компьютер с хранимой программой» стал EDSAC, разработанный и сконструированный в Кембриджском университете. Заработавший менее чем через год после «Baby», он уже мог использоваться для решения реальных проблем.

Cлайд 14

Cлайд 15

Следующим крупным шагом в истории компьютерной техники, стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным платам, было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности.

Слайд 1

И с т о р и я развития вычислительной техники

Слайд 2

ПРЕДМЕТЫ СЧЕТА ДРЕВНИХ ЛЮДЕЙ

До изобретения простых счет люди учились считать на пальцах рук

Использовали и посторонние предметы:узелки,камни, палочки, делали зарубки на дереве и костях

Слайд 3

С древних времен люди пытались создать средства для облегчения счета

ПРООБРАЗ НАШИХ СЕМИКОСТОЧКОВЫХ СЧЕТОВ

Слайд 4

НАШИ КОНТОРСКИЕ СЧЕТЫ – ЭТО РАЗНОВИДНОСТЬ ЗНАМЕНИТОГО АБАКА

конторские счеты абак

Слайд 5

Простейший абак - это доска с прорезанными в ней желобами. Как найти сумму двух чисел 134+223=357

1. Уложим в нижний желобок 4 камешка

2 В следующий 3 камешка

3. В третий желоб 1 камешек

4. Затем добавляем аналогично цифры второго слагаемого

5. Таким образом получился результат

Абак использовался в V -IV веке до нашей эры Их изготавливали из бронзы, камня слоновой кости, цветногостекла. Перевод с греческого слова абак означает ПЫЛЬ, т.к. изначально камешки раскладывали на ровную доску, покрытую пылью, чтобы камешки не скатывались Абаки использовались в Древней Греции и Риме, а чуть позже и в Западной Европе

Слайд 6

Счеты имели разные народы и поэтому имели свои особенности в расположении косточек. Так в Японии А так в Китае

суан-пань

Слайд 7

Дж.Непер изобрел логарифмы

Эдмунд Гунтер изобрел логарифмическую линейку с неподвижными шкалами

Логарифмическая линейка

Слайд 8

В 1623 г. В. Шикард изобрел машину, способную суммировать, вычитать, делить и перемножать числа. Это была первая механическая машина.

Первые механические приспособления для счета

Знаменитый физик, математик Блез Паскаль в 1642 году изобрел механическое устройство арифмометр

Слайд 9

В 1671 году Готфрид Вильгельм Лейбниц создал свою счетную машину, известную как “счетное колесо“ Лейбница. Он писал о машинах будущего, что они будут пригодны для работы с символами и формулами. Тогда эта идея казалась абсурдной.

Г. ЛЕЙБНИЦ

Слайд 10

В 1830 году был представлен проект аналитической машины Бэббиджа, которая явилась первым автоматическим программируемым вычислительным устройством.

ЧАРЛЬЗ БЕББИДЖ

Слайд 11

Ж. ЖАККАРД – ПЕРВЫЙ ИЗОБРЕТАТЕЛЬ ПЕРФОКАРТ

Станок для подготовки перфокарт

Общий вид перфокарт

Слайд 12

Графиня Ада Августа Лавлейс – была программистом первой аналитической машины.

ПЕРВАЯ ПРОГРАММИСТКА

Ее именем назван, разработанный в 1979 году, алгоритмический язык ADA

Слайд 13

В начале 19 века для расчетов применялись механические арифмометры

Слайд 14

1925 г. - на Сущевском им. Ф. Э. Дзержинского механическом заводе в Москве налажено производство арифмометров под маркой "Оригинал-Однер", в дальнейшем (с 1931 г.) они стали известны как арифмометры “Феликс”

Арифмометр имеет в верхней части (коробка) девять прорезов, в которых передвигаются рычажки. Сбоку прорезов нанесены цифры; передвигая вдоль каждого прореза рычажок, можно “поставить на рычагах” любое девятизначное число. Внизу под рычагами находятся два ряда окошечек (подвижная каретка): одни, более крупные, числом 13 справа. другие, меньшие, слева, числом 8. Ряд окошечек справа образует результирующий счетчик, а ряд слева - счетчик оборотов. Номер окошечка на счетчике указывает место единиц какого-либо разряда числа, стоящего на этом счетчике.Справа и слева каретки видны барашки (ласточки), служащие для сбрасывания цифр, появляющихся на этих счетчиках. Повертывая барашки до тех пор, пока они не щелкнут, мы убираем все цифры на счетчиках, оставляя нули.На коробке машины справа от прорезов имеются две стрелки, на концах которых стоят плюс (+) и минус (-). С правой стороны машины имеется ручка, которую можно повертывать в направлении плюс (по часовой стрелке) и в направлении минус (против часовой стрелки).Пусть на результирующем счетчике и на счетчике оборотов стоят нули. Поставим на рычагах какое-нибудь число, например 231 705 896, и повернем ручку в направлении плюс. После одного оборота на результирующем счетчике появится тоже число 231705 896 .Сложение и вычитание. Чтобы сложить несколько чисел, надо поставить эти числа одно за другим на рычагах и после каждой установки 1 раз повернуть ручку в направлении плюс. На результирующем счетчике появится сумма всех чисел.При вращении ручки в обратную сторону на результирующем счетчике появится разность между числом, стоявшим в нем до начала поворота, и числом, поставленным на рычагах. Умножение. Каретка арифмометра может передвигаться вдоль машины вправо и влево, и под прорезом для единиц можно поставить различные окошечки результирующего счетчика.

Слайд 15

В 1935 г. в СССР был выпущен клавишный полуавтоматический арифмометр КСМ-1 (клавишная счетная машина). Эта машина имела два привода: электрический (со скоростью 300 оборотов в минуту) и ручной (на случай отсутствия питания).

Клавиатура машины состоит из 8 вертикальных рядов по 10 клавишей в каждом, т. е. можно набрать 8-значные числа. Для удобства набора группы разрядов клавиатуры окрашены в разные цвета. Имеются клавиши гашения. Если цифра набрана ошибочно, то для ее замены достаточно нажать на нужную цифру в том же ряду и тогда неверно набранная цифра погасится автоматически. В подвижной каретке находится 16-разрядный счетчик результатов и 8-разрядный счетчик оборотов, имеющие устройства для передачи десятков из одного разряда в другой. Для гашения этих счетчиков служит ручка. Имеются подвижные запятые (для удобства считывания). Звонок сигнализирует о переполнении счетчика результатов. В послевоенные годы были выпущены полуавтоматы КСМ-2 (с незначительными отличиями по конструкции от КСМ-1, но с более удобным расположением рабочих деталей)

Слайд 16

В 40-ых г.г 19 столетия произошел коренной переворот в развитии вычислительной техники. С 1943 по1946 год в США была построена первая полностью электронная цифровая машина.

ПЕРЕВОРОТ

Слайд 17

Во времена Др. Рима был изобретен первый счетный инструмент - Абак В XVI в. в России были изобретены счеты. 1642г. – Блез Паскаль изобрел Колесо «Паскаля», механически выполняющее сложение и вычитание чисел. 1694г. – Готфрид Лейбниц сконструировал арифмометр, производящий четыре действия. 1888г. – Герман Холлерит сконструировал первую счетную машину.

Рассказать друзьям