Где протекают реакции цикла кребса. Суммарное уравнение цикла кребса

💖 Нравится? Поделись с друзьями ссылкой

ТРИКАРБОНОВЫХ КИСЛОТ ЦИКЛ – цикл лимонной кислоты или цикл Кребса – широко представленный в организмах животных, растений и микробов путь окислительных превращений ди- и трикарбоновых кислот, образующихся в качестве промежуточных продуктов при распаде и синтезе белков, жиров и углеводов. Открыт Х.Кребсом и У.Джонсоном (1937). Этот цикл является основой метаболизма и выполняет две важных функции – снабжения организма энергией и интеграции всех главных метаболических потоков, как катаболических (биорасщепление), так и анаболических (биосинтез).

Цикл Кребса состоит из 8 стадий (в двух стадиях на схеме выделены промежуточные продукты), в ходе которых происходит:

1) полное окисление ацетильного остатка до двух молекул СО 2 ,

2) образуются три молекулы восстановленного никотинамидадениндинуклеотида (НАДН) и одна восстановленного флавинадениндинуклеотида (ФАДН 2), что является главным источником энергии, производимой в цикле и

3) образуется одна молекула гуанозинтрифосфата (ГТФ) в результате так называемого субстратного окисления.

В целом, путь энргетически выгоден (DG 0 " = –14,8 ккал.)

Цикл Кребса, локализованный в митохондриях, начинается с лимонной кислоты (цитрат) и заканчивается образованием щавелевоуксусной кислоты (оксалоацетата – ОА). К субстратам цикла относятся трикарбоновые кислоты – лимонная, цис-аконитовая, изолимонная, щавелевоянтарная (оксалосукцинат) и дикарбоновые кислоты – 2-кетоглутаровая (КГ), янтарная, фумаровая, яблочная (малат) и щавелевоуксусная. К субстратам цикла Кребса следует отнести и уксусную кислоту, которая в активной форме (т.е. в виде ацетилкофермента А, ацетил-SКоА) участвует в конденсации с щавелевоуксусной кислотой, приводящей к образованию лимонной кислоты. Окисляется именно ацетильный остаток, вошедший в структуру лимонной кислоты, подвергается окислению; атомы углерода окисляются до CO 2 , атомы водорода частично акцептируются коферментами дегидрогеназ, частично в протонированной форме переходят в раствор, то есть в окружающую среду.

Как исходное соединение для образования ацетил-КоА обычно указывается пировиноградная кислота (пируват), образующаяся при гликолизе и занимающая одно из центральных мест в перекрещивающихся путях обмена веществ. Под влиянием фермента сложной структуры – пируватдегидрогеназы (КФ1.2.4.1 – ПДГаза) пирувата окисляется с образованием CO 2 (первое декарбоксилирование), ацетил-КоА и восстановливается НАД (см . схему). Однако окисление пирувата – далеко не единственный путь образования ацетил-КоА, который также является характерным продуктом окисления жирных кислот (фермент тиолаза или синтетаза жирных кислот) и других реакций разложения углеводов и аминокислот. Все ферменты, участвующие в реакциях цикла Кребса, локализованы в митохондриях, причем большинство из них растворимы, а сукцинатдегидрогеназа (КФ1.3.99.1) прочно связана с мембранными структурами.

Образование лимонной кислоты, с синтеза которой и начинается собственно цикл, при помощи цитратсинтазы (КФ4.1.3.7 – конденсирующий фермент на схеме), является реакцией эндергонической (с поглощением энергии), и ее реализация возможна благодаря использованию богатой энергией связи ацетильного остатка с KoA [СН 3 СО~SKoA]. Это главная стадия регуляции всего цикла. Далее следует изомеризация лимонной кислоты в изолимонную через промежуточную стадию образования цис-аконитовой кислоты (фермент аконитаза КФ4.2.1.3, обладает абсолютной стереоспецифичностью – чувствительностью к местоположению водорода). Продуктом дальнейшего превращения изолимонной кислоты под влиянием соответствующей дегидрогеназы (изоцитратдегидрогеназа КФ1.1.1.41) является, по-видимому, щавелевоянтарная кислота, декарбоксилирование которой (вторая молекула CO 2) приводит к КГ. Эта стадия также строго регулируется. По ряду характеристик (высокая молекулярная масса, сложная многокомпонентная структура, ступенчатые реакции, частично те же коферменты и т.д.) КГдегидрогеназа (КФ1.2.4.2) напоминает ПДГазу. Продуктами реакции являются CO 2 (третье декарбоксилирование), Н + и сукцинил-КоА. На этой стадии включается сукцинил-КоА-синтетаза, иначе называемая сукцинаттиокиназой (КФ6.2.1.4), катализирующая обратимую реакцию образования свободного сукцината: Сукцинил-КоА + Р неорг + ГДФ = Сукцинат + KoA + ГТФ. При этой реакции осуществляется так называемое субстратное фосфорилирование, т.е. образование богатого энергией гуанозинтрифосфата (ГТФ) за счет гуанозиндифосфата (ГДФ) и минерального фосфата (Р неорг) с использованием энергии сукцинил-КоА. После образования сукцината вступает в действие сукцинатдегидрогеназа (КФ1.3.99.1) – флавопротеид, приводящий к фумаровой кислоте. ФАД соединен с белковой частью фермента и является метаболически активной формой рибофлавина (витамин В 2). Этот фермент также характеризуется абсолютной стереоспецифичностью элиминирования водорода. Фумараза (КФ4.2.1.2) обеспечивает равновесие между фумаровой кислотой и яблочной (также стереоспецифична), а дегидрогеназа яблочной кислоты (малатдегидрогеназа КФ1.1.1.37, нуждающаяся в коферменте НАД + , также стереоспецифична) приводит к завершению цикла Кребса, то есть к образованию щавелевоуксусной кислоты. После этого повторяется реакция конденсации щавелевоуксусной кислотой с ацетил-КоА, приводящая к образованию лимонной кислоты, и цикл возобновляется.

Сукцинатдегидрогеназа входит в состав более сложного сукцинатдегидрогеназного комплекса (комплекса II) дыхательной цепи, поставляя восстановительные эквиваленты, (НАД-Н 2), образующиеся прив реакции, в дыхательную цепь.

На примере ПДГазы можно познакомиться с принципом каскадной регуляции активности метаболизма за счет фосфорилирования-дефосфорилирования соответствующего фермента специальными киназой и фосфатазой ПДГазы. Обе они присоединены к ПДГазе.

Предполагается, что катализ индивидуальных ферментативных реакций осуществляется в составе надмолекулярного «сверхкомплекса», так называемого «метаболона». Преимущества такой организации ферментов состоят в том, что нет диффузии кофакторов (коферментов и ионов металлов) и субстратов, а это способствует более эффективной работе цикла.

Энергетическая эффективность рассмотренных процессов невелика, однако образующиеся при окислении пирувата и последующих реакциях цикла Кребса 3 моля НАДН и 1 моль ФАДН 2 являются важными продуктами окислительных превращений. Дальнейшее их окисление осуществляется ферментами дыхательной цепи также в митохондриях и сопряжено с фосфорилированием, т.е. образованием АТФ за счет этерификации (образования фосфороорганических эфиров)минерального фосфата. Гликолиз , ферментное действие ПДГазы и цикл Кребса – всего в сумме 19 реакций – определяют полное окисление одной молекулы глюкозы до 6 молекул CO 2 с образованием 38 молекул АТФ – этой разменной «энергетической валюты» клетки. Процесс окисления НАДН и ФАДН 2 ферментами дыхательной цепи энергетически весьма эффективен, происходит с использованием кислорода воздуха, приводит к образованию воды и служит основным источником энергетических ресурсов клетки (более 90%). Однако в его непосредственной реализации ферменты цикла Кребса не участвуют. В каждой клетке человека есть от 100 до 1000 митохондрий, обеспечивающих жизнедеятельность энергией.

В основе интегрирующей функции цикла Кребса в метаболизме лежит то, что углеводы, жиры и аминокислоты из белков могут превращаться в конечном счете в интермедиаты (промежуточные соединения) этого цикла или синтезироваться из них. Выведение интермедиатов из цикла при анаболизме должно сочетаться с продолжением катаболической активности цикла для постоянного образования АТФ, необходимого для биосинтезов. Таким образом, цикл должен одновременно выполнять две функции. При этом концентрация интермедиатов (особенно ОА) может понижаться, что способно привести к опасному понижению производства энергии. Для предотвращения служат «предохранительные клапаны», называемые анаплеротическими реакциями (от греч. «наполнять»). Важнейшей является реакция синтеза ОА из пирувата, осуществляемая пируваткарбоксилазой (КФ6.4.1.1), также локализованной в митохондриях. В результате накапливается большое количество ОА, что обеспечивает синтез цитрата и др. интермедиатов, что позволяет циклу Кребса нормально функционировать и, вместе с тем, обеспечивать выведение интермедиатов в цитоплазму для последующих биосинтезов. Таким образом, на уровне цикла Кребса происходит эффективно скоординированная интеграция процессов анаболизма и катаболизма под действием многочисленных и тонких регуляторных механизмов, в том числе гормональных.

В анаэробных условиях вместо цикла Кребса функционируют его окислительная ветвь до КГ (реакции 1, 2, 3) и восстановительная – от ОА до сукцината (реакции 8®7®6). При этом много энергии не запасается и цикл поставляет только интермедиаты для клеточных синтезов.

При переходе организма от покоя к активности возникает потребность в мобилизации энергии и обменных процессов. Это, в частности, достигается у животных шунтированием наиболее медленных реакций (1–3) и преимущественным окислением сукцината. При этом КГ – исходный субстрат укороченного цикла Кребса – образуется в реакции быстрого переаминирования (переноса аминной группы)

Глутамат + ОА = КГ + аспартат

Другая модификация цикла Кребса (так называемый 4-аминобутиратный шунт) – это превращение КГ в сукцинат через глутамат, 4-аминобутират и янтарный семиальдегид (3-формилпропионовую кислоту). Эта модификация важна в ткани мозга, где около 10% глюкозы расщепляется по этому пути.

Тесное сопряжение цикла Кребса с дыхательной цепью, особенно в митохондриях животных, а также ингибирование большинства ферментов цикла под действием АТФ, предопределяют снижение активности цикла при высоком фосфорильном потенциале клетки, т.е. при высоком соотношении концентраций АТФ/АДФ. У большинства растений, бактерий и многих грибов тесное сопряжение преодолевается развитием несопряженных альтернативных путей окисления, позволяющих поддерживать одновременно дыхательную активность и активность цикла на высоком уровне даже при высоком фосфорильном потенциале.

Игорь Рапанович

4. Цикл трикарбоновых кислот

Вторым компонентом общего пути катаболизма является ЦТК. Этот цикл был открыт в 1937 г. Кребсом и Джонсоном. В 1948 г. Кеннеди и Ленинджер доказали, что ферменты ЦТК локализованы в матриксе митохондрий.

4.1. Химизм цикла трикарбоновых кислот. Свободную уксусную кислоту невозможно окислить путем дегидрирования. Поэтому она в активной форме (ацетил-КоА) предварительно связывается с оксалоацетатом (ЩУК, щавелевоуксусной кислотой), в результате чего образуется цитрат.

1. Ацетил-КоА соединяется с оксалоацетатом в реакции альдольной конденсации, катализируемой цитратсинтазой . Образуется цитрил-КоА. Цитрил-КоА при участии воды гидролизуется до цитрата и НS -КоА.

2. Аконитат-гидратаза конитаза ) катализирует превращение цитрата в изоцитрат через стадию цис-аконитовой кислоты. Аконитаза по механизму действия одновременно гидратаза и изомераза.

3. Изоцитратдегидрогеназа катализирует дегидрирование изолимонной кислоты в оксалосукцинат (щавелевоянтарную кислоту), которая затем декарбоксилируется в 2-оксоглутарат (α-кетоглутарат). Коферментом является НАД + (в митохондриях) и НАДФ + (в цитозоле и митохондриях).

4. 2-Оксоглутаратдегидрогеназный комплекс (α-кетоглутаратдегидрогеназный комплекс) катализирует окислительное декарбоксилирование 2-оксоглутарата в сукцинил-КоА. Мультиферментный 2-оксоглутаратдегидрогеназный комплекс похож на пируватдегидрогеназный комплекс и процесс протекает аналогично окислительному декарбоксилированию пирувата.

5. Сукцинилтиокиназа катализирует расщепление сукцинил-КоА на янтарную кислоту и кофермент А. Энергия расщепления сукцинил-КоА накапливается в виде гуанозинтрифосфата (ГТФ). В сопряженной реакции перефосфорилирования АДФ фосфорилируется в АТФ, а освобождающиеся молекулы ГДФ могут вновь фосфорилироваться (субстратное фосфорилирование ). У растений фермент специфичен к АДФ и АТФ.

6. Сукцинатдегидрогеназа катализирует превращение сукцината в фумаровую кислоту. Фермент стереоспецифичен, является интегральным белком, так как вмонтирован во внутреннюю мембрану митохондрий и в качестве простетических групп содержит ФАД и железосерные белки. ФАДН 2 не отделяется от фермента, а два электрона далее передаются на кофермент Q цепи переноса электронов внутренней мембраны митохондрий.

7.Фумарат-гидратаза (фумараза) катализирует превращение фумаровой кислоты в яблочную (малат) с участием воды. Фермент стереоспецифичен, образует только L -малат.

8.Малатдегидрогеназа катализирует окисление яблочной кислоты в оксалоацетат. Кофермент малатдегидрогеназы - НАД + . Далее оксалоацетат вновь конденсируется с ацетил-КоА и цикл повторяется.

4.2. Биологическое значение и регуляция цикла трикарбоновых кислот. Цикл трикарбоновых кислот – компонент общего пути катаболизма, в котором происходит окисление топливных молекул углеводов, жирных кислот и аминокислот. Большинство топливных молекул поступают в ЦТК в виде ацетил-КоА (рис. 1). Все реакции ЦТК протекают согласованно в одном направлении. Суммарная величина D G 0 ¢ = -40 кДж/моль.

В среде врачей давно бытует крылатая фраза «Жиры горят в пламени углеводов». Ее надо понимать как окисление ацетил-КоА, основным источником которого является β-окисление жирных кислот, после конденсации с оксалоацетатом, образуемой, главным образом, из углеводов (при карбоксилировании пирувата). При нарушениях обмена углеводов или голодании создается дефицит оксалоацетата, ведущий к уменьшению окисления ацетил-КоА в ЦТК.

Рис.1. Роль ЦТК в клеточном дыхании. 1 стадия (ЦТК) извлечение из молекулы ацетил-КоА 8 электронов; 2 стадия (цепи переноса электронов) восстановление двух молекул кислорода и формирование протонного градиента (~36 Н +); 3 стадия (АТФ-синтаза) использование энергии протонного градиента для образования АТФ (~9 АТФ) (Berg J .M ., Tymoczko J .L ., Stryer L . Biochemistry . N -Y : W .H .Freeman and Company , 2002).

Основная метаболическая роль ЦТК может быть представлена в виде двух процессов: 1) серия окислительно-восстановительных реакций, в результате которых ацетильная группа окисляется до двух молекул СО 2 ; 2) четырехкратное дегидрирование, ведущее к образованию 3 молекул НАДН+Н + и 1 молекулы ФАДН 2 . Кислород необходим для функционирования ЦТК опосредованно как акцептор электронов в конце цепей переноса электронов и для регенерации НАД + и ФАД.

Основное значение для регуляции ЦТК имеет синтез и гидролиз АТФ.

1. Изоцитратдегидрогеназа аллостерически активируется АДФ путем повышения сродства фермента к субстрату. НАДН ингибирует этот фермент, замещая НАД + . АТФ также ингибирует изоцитратдегидрогеназу. Важно, что превращения метаболитов в ЦТК требуют на нескольких стадиях НАД + и ФАД, количество которых достаточно только в условиях низкого энергетического заряда.

2. Активность 2-оксоглутаратдегидрогеназного (α-кетоглутаратдегидрогеназного) комплекса регулируется аналогично регуляции пируватдегидрогеназного комплекса. Этот комплекс ингибируется сукцинил-КоА и НАДН (конечными продуктами превращений, катализируемых 2-оксоглутаратдегидрогеназным комплексом). Кроме того, 2-оксоглуттаратдегидрогеназный комплекс ингибируется высоким энергетическим зарядом клетки. Итак, скорость превращений в ЦТК уменьшается при достаточной обеспеченности клетки АТФ (рис. 11.2). У ряда бактерий цитратсинтаза аллостерически ингибируется АТФ посредством повышения Км для ацетил-КоА.

Схема регуляции общего пути катаболизма представлена на рисунке 2.

Рис. 2. Регуляция общего пути катаболизма. Основными молекулами, регулирующими функционирование ЦТК являются АТФ и НАДН. Основными пунктами регуляции являются изоцитратдегидрогеназа и 2-оксоглутаратдегидрогеназный комплекс.

4.3. Энергетическая роль общего пути катаболизма

В общем пути катаболизма из 1 молекулы пировиноградной кислоты образуется 3 молекулы СО 2 в следующих реакциях: при окислительном декарбоксилировании пировиноградной кислоты, при декарбоксилировании изолимонной кислоты и при декарбоксилировании 2-оксоглутаровой кислоты. Всего при окислении 1 молекулы пировиноградной кислоты отнимается пять пар атомов водорода, из них одна пара – от сукцината и поступает на ФАД с образованием ФАДН 2 , а четыре пары – на 4 молекулы НАД + с образованием 4 молекул НАДН+Н + при окислительном декарбоксилировании пировиноградной, 2-оксоглутаровой кислот, дегидрировании изоцитрата и малата. В конечном итоге атомы водорода переносятся на кислород с образованием 5 молекул Н 2 О, а выделившаяся энергия аккумулируется в реакциях окислительного фосфорилирования в виде молекул АТФ.

Общий итог:

1. Окислительное декарбоксилирование пирувата ~ 2,5 АТФ.

2. В ЦТК и сопряженных дыхательных цепях ~ 9 АТФ.

3. В реакции субстратного фосфорилирования ЦТК ~ 1 АТФ.

В ЦТК и сопряженных реакциях окислительного фосфорилирования образуется примерно10 АТФ при окислении ацетильной группы одной молекулы ацетил-КоА

Итого в общем пути катаболизма в результате превращений 1 молекулы пировиноградной кислоты выделяется примерно 12,5 молекул АТФ.

В 30-х годах двадцатого века немецкий учёный Ганс Кребс вместе со своим учеником занимается изучением циркуляции мочевины. Во время Второй мировой войны, Кребс перебирается в Англию где и приходит к выводу, что некоторые кислоты катализируют процессы в нашем организме. За это открытие ему была вручена Нобелевская премия.

Как известно, энергетический потенциал организма зависит от глюкозы, которая содержится в нашей крови. Также, клетки человеческого организма содержат митохондрии, которые помогают в переработке глюкозы с целью её превращения в энергию. После некоторых преобразований глюкоза превращается в вещество под названием «аденозинтрифосфат» (АТФ) – главный источник энергии клеток. Его структура такова, что он может встраиваться в белок, и это соединение будет обеспечивать энергией все системы органов человека. Напрямую глюкоза не может стать АТФ, поэтому используются сложные механизмы для получения нужного результата. Им и является цикл Кребса.

Если говорить совсем уж простым языком, то цикл Кребса — это цепочка химических реакций, происходящих в каждой клетке нашего тела, которая называется циклом потому, что продолжается непрерывно. Конечным результатом данного цикла реакций является производство аденозинтрифосфата — вещества, которое представляет собой энергетическую основу жизнедеятельности организма. По-другому этот цикл называется клеточным дыханием, так как большинство его стадий происходят с участием кислорода. Кроме того, выделяют важнейшую функцию цикла Кребса – пластическую (строительную), так как во время цикла вырабатываются важные для жизнедеятельности элементы: углеводы, аминокислоты и т. д.

Для осуществления всего вышеизложенного необходимо наличие более ста различных элементов, в том числе витаминов. При отсутствии или недостатке хотя бы одного из них цикл будет недостаточно эффективным, что приведёт к нарушению метаболизма во всём теле человека.

Этапы цикла Кребса

  1. Первый этап заключается в расщеплении молекул глюкозы на две молекулы пировиноградной кислоты. Пировиноградная кислота выполняет важную метаболическую функцию, от её действия напрямую зависит работа печени. Доказано, что данное соединение содержится в некоторых фруктах, ягодах и даже в мёде; её успешно применяют в косметологии, как способ борьбы с отмершими клетками эпителия (гоммаж). Также, в результате реакции может образоваться лактат (молочная кислота), которая имеется в поперечнополосатой мускулатуре, крови (точнее в эритроцитах) и мозге человека. Важный элемент в работе сердца и нервной системы. Происходит реакция декарбоксилирования, то есть отщепление карбоксильной (кислотной) группы аминокислот, в процессе которой образуется кофермент А – он выполняет функцию транспортировки углерода в различных обменных процессах. При соединении с молекулой оксалоацетата (щавелевой кислоты) получается цитрат, который фигурирует в буферных обменах, т. е. «на себе» переносит полезные вещества в нашем организме и помогает им усваиваться. На данном этапе кофермент А полностью высвобождается, плюс, мы получаем молекулу воды. Данная реакция является необратимой.
  2. Вторая стадия характеризуется дегидрированием (отщеплением молекул воды) от цитрата, что дают нам цис-аконитат (аконитовая кислота), который помогает в образовании изоцитрата. По концентрации данного вещества, например, можно определить качество фруктов или фруктового сока.
  3. Третий этап. Здесь от изолимонной кислоты отделяется карбоксильная группа, что в результате даёт кетоглутаровую кислоту. Альфа-кетоглутарат участвует в улучшении всасывания аминокислот из поступающей пищи, улучшает метаболизм и предупреждает появление стрессов. Также образовывается NADH – вещество необходимое для нормального протекания окислительных и обменных процессов в клетках.
  4. На следующем этапе при отделении карбоксильной группы образуется сукцинил-КоА, который является важнейшим элементом в образовании анаболических веществ (белков и т.д.). Возникает процесс гидролиза (соединение с молекулой воды) и высвобождается энергия АТФ.
  5. На последующих стадия цикл начнёт замыкаться, т.е. сукцинат снова потеряет молекулу воды, что превращает его в фумарат (вещество способствующее переносу водорода к коферментам). К фумарату присоединяется вода и образуется малат (яблочная кислота), она окисляется, что снова приводит к появлению оксалоацетата. Оксалоацетата, в свою очередь, выступает в роли катализатора в вышеуказанных процессах, его концентрациях в митохондриях клеток постоянна, но, при этом, довольна низкая.

Таким образом можно выделить важнейшие функции данного цикла:

  • энергетическая;
  • анаболическая (синтез органических веществ – аминокислот, жирных белков и т.д.);
  • катаболическая: превращение некоторых веществ в катализаторы – элементы, способствующие выработке энергии;
  • транспортная, в основном происходит транспортировка водорода, участвующего в дыхании клеток.

Цикл лимонной кислоты (цикл трикарбоновых кислот – ЦТК, цикл Кребса) представляет собой серию реакций, протекающих в митохондриях, в ходе которых осуществляется катаболизм ацетильных групп и высвобождение восстановительных эквивалентов; при окислении последних в ЭТЦ поставляется свободная энергия, кумулируемая в АТФ. Цикл запускается оксалоацетатом, который синтезируется из ПВК под действием пируваткарбоксилазы.

Молекула ацетил-КоА, полученная в окислительном декарбоксилировании ПВК и β-окислении ВЖК, взаимодействует с ОА; в результате генерируется 6-тиуглеродная трикарбоновая кислота — лимонная (цитрат) (Рис. 3.8). Далее в серии реакций происходит высвобождение двух молекул углекислого газа и регенерация оксалоацетата. Поскольку количество последнего, необходимое для преобразования большого числа ацетильных групп, весьма невелико, можно считать, что это соединение выполняет каталитическую функцию.

В ЦТК, благодаря активности ряда специфических дегидрогеназ, происходит образование восстановительных эквивалентов в форме протонов и электронов, индуцирующих дыхательную цепь, при функционировании которой синтезируется АТФ

Образование макроэргических соединений в ЦТК

Окисляемый

субстрат

Фермент,

катализирующий

Место образования макроэргов и характер сопряженного процесса Число синтезированных молекул АТФ
Изоцитрат ИзоцитратДГ 3
α-Кетоглутарат α–кетоглутаратДГ Окисление НАДН в дыхательной цепи 3
Сукцинилфосфат Сукцинаттиокиназа Синтез АТФ на субстратном уровне 1
Сукцинат СукцинатДГ Окисление ФАДН 2 в дыхательной цепи 2
Малат МалатДГ Окисление НАДН в дыхательной цепи 3
Итого 12

Таким образом, каждый цикл обеспечивает синтез 12 молекул макроэргов.

Биологические функции цикла Кребса

ЦТК является общим конечным путем окислительного распада углеводов, липидов, белков, поскольку в ходе метаболизма глюкоза, ЖК, глицерин, аминокислоты и ациклические азотистые основания превращаются либо в ацетил–КоА, либо в метаболиты этого процесса, являющиеся источниками восстановительных эквивалентов, запускающих ЭТЦ и окислительное фосфорилирование, тем самым обеспечиваются энергетические запросы различных органов и тканей, и постоянная температура тела. Эндогенная вода образуется также, как известно, за счет биологического окисления, субстратами которого служат метаболиты ЦТК. Промежуточные продукты ЦТК могут использоваться в анаболизме: ОА и его предшественники служат субстратами в ГНГ; из α–кетоглутарата и ОА с помощью переаминирования легко получить аминокислоты; сукцинил–КоА необходим для синтеза гема; избыточный цитрат, выйдя из митохондрий, отщепляет ацетил-КоА, из которого генерируются ВЖК, ХС, ацетилхолин, производные моносахаридов (мономеров гетерополисахаридов).

У человека не описаны генетически обусловленные повреждения ферментов, катализирующих его различные стадии, т.к. возникновение подобных нарушений несовместимо с нормальным развитием организма.

Краткие исторические сведения

Наш любимый цикл – ЦТК, или Цикл трикарбоновых кислот – жизнь на Земле и под Землей и в Земле… Стоп, а вообще это самый удивительный механизм – он универсален, является путем окисления продуктов распада углеводов, жиров, белков в клетках живых организмов, в результате получаем энергию для деятельности нашего тела.

Открыл этот процесс собственно Кребс Ганс, за что и получил Нобелевскую премию!

Родился он в августе 25 - 1900 года в Германии город Хильдесхайм. Получил медицинское образование Гамбургского университета, продолжил биохимические исследования под руководством Отто Вaрбурга в Берлине.

В 1930 открыл вместе со студентом своим процесс обезвреживания аммиака в организме, который был у многих представителей живого мира, в том числе и человека. Этот цикл – цикл образования мочевины, который также известен под именем цикла Кребса №1.

Когда к власти пришел Гитлер, Ганс эмигрировал в Великобританию, где продолжает заниматься наукой в Кембриджском и Шеффилдском университетах. Развивая исследования биохимика из Венгрии Альберта Сент-Дьёрди, получает озарение и делает самый знаменитый цикл Кребса № 2, или по-другому "цикл Сент-Дьёрди – Кребса" - 1937.

Результаты исследований посылаются в журнал "Nature", который отказывает в напечатании статьи. Тогда текст перелетает в журнал "Enzymologia" в Голландии. Кребс получает Нобелевскую премию в 1953 по физиологии и медицине.

Открытие было удивительным: в 1935 Сент-Дьёрди находит, что янтарная, оксалоуксусная, фумаровая и яблочная кислоты (все 4 кислоты - естественные химические компоненты клеток животных) усиливают процесс окисления в грудной мышце голубя. Которая была измельчена.

Именно в ней процессы метаболические идут с наибольшей скоростью.

Ф. Кнооп и К.Мартиус в 1937 году находят, что лимонная кислота превращается в изолимонную через продукт промежуточный, цис – аконитовую кислоту. Кроме того изолимонная кислота могла превращаться в а-кетоглутаровую, а та – в янтарную.

Кребс заметил действие кислот на поглощение О2 грудной мышцей голубя и выявил из активирующее действие на окисление ПВК и образование Ацетил-Коэнзима А. Кроме того процессы в мышце угнетались малоновой кислотой, которая похожа на янтарную и могла конкурентно ингибировать ферменты, у которых субстрат – янтарная кислота.

Когда Кребс добавлял малоновую кислоту к среде реакции, то начиналось накопление а-кетоглутаровой, лимонной и янтарной кислот. Таким образом понятно, что действие совместное а-кетоглутаровой, лимонной кислот приводит к образованию янтарной.

Ганс исследовал еще более 20 веществ, но они не влияли на окисление. Сопоставив полученные данные, Кребс получил цикл. В самом начале исследователь не мог точно сказать начинается процесс с лимонно или изолимонной кислоты, поэтому назвал "цикл трикарбоновых кислот".

Сейчас мы знаем, что первой является лимонная кислота, поэтому правильно - цитратный цикл или цикл лимонной кислоты.

У эукариот реакции ЦТК протекают в митохондриях, при этом все ферменты для катализа, кроме 1, содержатся в свободном состоянии в матриксе митохондрии, исключение - сукцинатдегидрогеназа - локализуется на внутренней мембране митохондрии, встраивается в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

Познакомимся с участниками цикла:

1) Ацетил-Коэнзим А:
- ацетильная группа - Acetyl group
- коэнзим А - Coenzyme A:

2) ЩУК – Оксалоацетат - Щавелево-Уксусная кислота:
как бы состоит из двух частей: щавелевая и уксусная кислота.

3-4) Лимонная и Изолимонная кислоты:

5) а-Кетоглутаровая кислота:

6) Сукцинил-Коэнзим А:

7) Янтарная кислота:

8) Фумаровая кислота:

9) Яблочная кислота:

Как же происходят реакции? В целом мы все привыкли к виду кольца, что и представлено снизу на картинке. Еще ниже все расписано по этапам:

1. Конденсация Ацетил-Коэнзима А и Щавелево-Уксусной кислоты ➙ лимонная кислота.

Превращение Ацетил-Коэнзима А берут начало с конденсации со Щавелево-Уксусной кислотой, в результате образуется лимонная кислота.

Реакция не требует расхода АТФ, так как энергия для этого процесса обеспечивается в результате гидролиза тиоэфирной связи с Ацетил-Коэнзимом А, которая является макроэргической:

2. Лимонная кислота через цис-аконитовую переходит в изолимонную.

Происходит изомеризация лимонной кислоты в изолимонную. Фермент превращения - аконитаза - дегидратирует вначале лимонную кислоту с образованием цис-аконитовой кислоты, потом соединяет воду к двойной связи метаболита, образуя изолимонную кислоту:

3. Изолимонная дегидрируется с образованием а-кетоглутаровой и СО2.

Изолимонная кислота окисляется специфической дегидрогеназой, кофермент которой - НАД.

Одновременно с окислением идет декарбоксилирование изолимонной кислоты. В результате превращений образуется α-кетоглутаровая кислота.

4. Альфа-кетоглутаровая кислота дегидрируется ➙ сукцинил-коэнзим А и СО2.

Следующая стадия - окислительное декарбоксилирование α-кетоглутаровой кислоты.

Катализируется α-кетоглутаратдегидрогеназным комплексом, который аналогичен по механизму, структуре и действию пируватдегидрогеназному комплексу. В результате образуется сукцинил-КоА.

5. Сукцинил-коэнзим А ➙ янтарная кислота.

Сукцинил-КоА гидролизуется до свободной янтарной кислоты, выделяющаяся энергия сохраняется путем образования гуанозинтрифосфата. Эта стадия - единственная в цикле, прикоторой прямо выделится энергия.

6. Янтарная кислота дегидрируется ➙ фумаровая.

Дегидрирование янтарной кислоты ускоряется сукцинатдегидрогеназой, коферментом ее является ФАД.

7. Фумаровая гидратируется ➙ яблочная.

Фумаровая кислота, которая образуется при дегидрировании янтарной кислоты, гидратируется и образуется яблочная.

8. Яблочная кислота дегидрируется ➙ Щавелево-Уксусная - цикл замыкается.

Заключительный процесс - дегидрирование яблочной кислоты, катализируемое малатдегидрогеназой;

Результат стадии - метаболит, с которого начинается цикл трикарбоновых кислот - Щавелево-Уксусная кислота.

В 1 реакцию следующего цикла вступит другая м-ла Ацетил-Коэнзима А.

Как запомнить этот цикл? Просто!

1) Очень образное выражение:
Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует- цитрат, цис-аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

2) Другое длинное стихотворение:

ЩУКа съела ацетат, получается цитрaт,
Через цисaконитaт будет он изоцитрaт.
Вoдoрoды отдaв НАД, oн теряет СО2,
Этoму безмернo рaд aльфa-кетоглутaрaт.
Окисление грядет - НАД похитил вoдoрoд,
ТДФ, коэнзим А забирают СО2.
А энергия едва в сукциниле пoявилась,
Сразу АТФ рoдилась и oстался сукцинат.
Вот дoбрался он дo ФАДа - вoдoрoды тому надo,
Фумарат воды напился, и в малат oн превратился.
Тут к малату НАД пришел, вoдoрoды приобрел,
ЩУКа снoва oбъявилась и тихoнькo затаилась.

3) Оригинальное стихотворение – покороче:

ЩУКу АЦЕТИЛ ЛИМOНил,
Нo нарЦИСсA КOНь боялся,
Oн над ним ИЗOЛИМOННо
AЛЬФA - КЕТOГЛУТAРался.
CУКЦИНИЛся КOЭНЗИМом,
ЯНТAРился ФУМАРOВo,
ЯБЛОЧек припаc на зиму,
Обернулcя ЩУКой снова.

Рассказать друзьям