Несобственные интегралы с бесконечными пределами признаки сходимости. Несобственный интеграл с бесконечным пределом интегрирования

💖 Нравится? Поделись с друзьями ссылкой

Иногда такие несобственные интегралы называют несобственными интегралами второго рода . Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: .

Но, в отличие от определенного интеграла, подынтегральная функция терпит бесконечный разрыв (не существует):

1) в точке ,

2) точке ,

3) в обеих точках сразу,

4) или даже на отрезке интегрирования.

Мы рассмотрим первые два случая, для случаев 3-4 в конце статьи есть ссылка на дополнительный урок.

Рассмотрим сразу пример, чтобы было понятно:

Вроде бы это определенный интеграл. Но на самом деле – это несобственный интеграл второго рода, так как если мы подставим в подынтегральную функцию, то значение нижнего предела

тогда знаменатель у нас обращается в ноль, то есть подынтегральной функции в этой точке просто не существует!

При анализе несобственного интеграла всегда нужно подставлять в подынтегральную функцию оба предела интегрирования . В этой связи проверим и верхний предел:

Здесь всё хорошо. Криволинейная трапеция для рассматриваемой разновидности несобственного интеграла принципиально выглядит так:

Здесь почти всё так же, как в интеграле первого рода. Наш интеграл численно равен площади заштрихованной криволинейной трапеции, которая не ограничена сверху. При этом могут быть два варианта: несобственный интеграл расходится (площадь бесконечна), либо несобственный интеграл равен конченому числу (когда площадь бесконечной фигуры – конечна!).

Осталось только модифицировать формулу Ньютона-Лейбница. Она тоже модифицируется с помощью предела, но предел стремится уже не к бесконечности, а к значениюсправа. Легко проследить по чертежу, что по оси OX справа .

Посмотрим, как это реализуется на практике.

Пример 6

(не забываем устно или на черновике проверить, всё ли нормально с верхним пределом!). Сначала вычислим неопределенный интеграл:

У кого возникли трудности с заменой, обратитесь к уроку Метод замены в неопределенном интеграле .

Вычислим несобственный интеграл:

(1) Что здесь нового? По технике решения практически ничего. Единственное, что поменялось, это запись под значком предела:

Добавка +0 обозначает, что мы стремимся к значению ¾ справа, что логично (см. график). Такой предел в теории пределов называют односторонним пределом . В данном случае у нас правосторонний предел .

(2) Подставляем верхний и нижний предел по формуле Ньютона Лейбница.

(3) Разбираемся с при . Как определить, куда стремится выражение? Грубо говоря, в него нужно просто подставить значение , подставляем три четверти и указываем, что . Причесываем ответ.

В данном случае несобственный интеграл равен отрицательному числу. В этом никакого криминала нет, просто соответствующая криволинейная трапеция расположена под осью OX . А сейчас примеры для самостоятельного решения.

Пример 7

Вычислить несобственный интеграл или установить его расходимость.

Пример 8

Вычислить несобственный интеграл или установить его расходимость.

Если подынтегральной функции не существует в точке

Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:

Здесь всё абсолютно делаем так же, за исключением того, что предел у нас стремится к значению b слева. По оси OX мы должны бесконечно близко приблизиться к точке разрыва слева .

Пример 9

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечный разрыв в точке b = 3 (устно проверяем, что с другим пределом интегрирования всё нормально!).

Для разнообразия решим этот предел сразу – методом подведения функции под знак дифференциала. Те, кому трудно, могут сначала найти неопределенный интеграл по уже рассмотренной схеме.

Добавка (-0) обозначает, что предел у нас левосторонний , и к точке b = 3 мы приближаемся по оси OX слева .

Разбираемся, почему дробь

(это лучше делать устно или на черновике).

Подставляем под корень предельное значение b = 3 - 0.

Окончательно:

Несобственный интеграл расходится.

Знак минус обозначает, что соответствующая криволинейная трапеция расположена под осьюOX . Будьте очень внимательны в знаках.

Да, конечно, несобственный интеграл расходится, но и – это разные вещи, разные жанры, и если Вы недосмотрите за знаками, то, строго говоря, допустите серьезную ошибку.

И заключительные два примера для самостоятельного рассмотрения:

Пример 10

Вычислить несобственный интеграл или установить его расходимость.

Пример 11

Вычислить несобственный интеграл или установить его расходимость.

Разбор ситуации, когда оба предела интегрирования «плохие», или точка разрыва содержится прямо на отрезке интегрирования, можно найти в статье Эффективные методы решения определённых и несобственных интегралов .

Решения и ответы:

Пример 4: Решение:

.

Пример 5: Решение:

Подынтегральная функция непрерывна на .

Пример 7: Решение:

Подынтегральная функция терпит бесконечный разрыв в точке

Несобственный интеграл расходится.

Примечание: с пределом выражения

2 Несобственными интегралами первого рода называются интегралы вида Подынтегральная функция предполагается непрерывной на всем участке интегрирования.

2 Если существует и конечен предел , то говорят, что несобственный интеграл сходится и равен

Аналогично определяются интегралы и :

(8.21)
где а – любое действительное число. Причем про последний интеграл говорят, что он сходится тогда и только тогда, когда сходятся оба составляющих его интеграла.

Задача 8.10.

Решение.

Следовательно, интеграл расходится.

Задача 8.11. Вычислить несобственный интеграл .

Решение.

Данный интеграл сходится.

2 Несобственными интегралами второго рода называются интегралы вида: , где подынтегральная функция f (x ) имеет бесконечные разрывы на конечном отрезке [a ; b ]. Определяются несобственные интегралы второго рода по-разному, в зависимости от расположения точек разрыва на промежутке [a ; b ].

1) Предположим, что функция f (x ) имеет бесконечный разрыв в некоторой внутренней точке области интегрирования (c Î(a ; b )) В остальных точках отрезка [a ; b ] функция предполагается непрерывной.

Тогда, если существуют и конечны пределы и , то говорят, что интеграл сходится и равен

. (8.22)
2) Пусть единственная точка разрыва функции f (x ) совпадает с точкой а

. (8.23)
3) Пусть единственная точка разрыва функции f (x ) совпадает с точкой b . Тогда, если существует и конечен предел , то говорят, что интеграл сходится, и равен

. (8.24)
Всюду предполагается, что e > 0 и d > 0.

Задача 8.12. Вычислить несобственный интеграл .

Решение. x = 2. Следовательно,

Задача 8.13. Вычислить несобственный интеграл .

Решение. Подынтегральная функция имеет разрыв второго рода в точке x = 0 (внутри области интегрирования). Следовательно,

Первый предел существует и конечен, но второй предел равен бесконечности ( при ). Следовательно, данный интеграл расходится.

Глава 9. Функции нескольких переменных

§9.1. Определение n -мерного евклидова пространства R n .

Прежде чем перейти к изучению функций многих переменных полезно ввести понятие n -мерного пространства для любого n = 1, 2, 3,… .

2 Точкой x n -мерного пространства (вектором) называется упорядоченная совокупность n действительных чисел .

Число называется i -ой координатой вектора .

2 Расстояние между двумя точками n -мерного пространства и определяется по формуле:


Расстояние от точки до точки x называется модулем вектора x и обозначается . Из формулы (9.1) следует, что .

В n -мерном пространстве естественным образом вводится понятие скалярного произведения:

Угол между векторами x и y можно определить по формуле:

По прежнему, векторы x и y перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю.

2Совокупность всех точек n -мерного пространства, в котором определено расстояние согласно формуле (9.1) и скалярное произведение, называется n -мерным евклидовым векторным пространством и обозначается через .

В случае n = 1 пространство совпадает с прямой, в случае n = 2 – с плоскостью, а в случае n = 3 – с пространством.

2 Пусть и . Совокупность всех точек таких, что , называется n -мерным шаром с центром в точке x или e -окрестностью точки x в пространстве и обозначается .

В координатной форме это определение выглядит так:

В случае прямой, т.е. при n = 1, окрестность точки представляет из себя интервал с центром в точке радиуса e . В случае плоскости, т.е. при n = 2, окрестность точки представляет из себя открытый круг с центром в точке радиуса e . В случае пространства, т.е. при n = 3 окрестность точки представляет из себя открытый шар с центром в точке радиуса e .

§9.2. Область определения функции нескольких переменных. Непрерывность

2 Функцией n переменных называется такое правило (закон), по которому каждому набору, состоящему из n переменных , взятому из некоторой области D n -мерного пространства , ставится в соответствие единственное число z . В наиболее простом случае .

2 Функцией 2-х переменных называется такое правило (закон), по которому каждой точке M (x ; y ), принадлежащей некоторой области D плоскости xOy , ставится в соответствие единственное число z .

Множество точек в пространстве с координатами образуют некоторую поверхность (рис. 9.1), возвышающуюся над областью D (геометрический смысл функции двух переменных).

2 Область D , для которой построено указанное выше соответствие, называется областью определения функции .

Задача 9.1. Найти область определения функции

Решение. Искомая область определения является множеством точек на плоскости xOy , удовлетворяющих системе неравенств . Неравенства и меняют свой знак на противоположный (соответственно) при пересечении следующих линий: x = y и x = 0, y = 0. Эти линии разбивают плоскость xOy на 6 областей. Последовательно, подставляя произвольные точки, из каждой области в систему , убеждаемся в том, что объединение областей (1) и (3) является областью определения исходной функции. Причем прямая x = y , за исключением точки (0; 0), входит в область определения, а прямые x = 0, и y = 0 – не входят (рис. 9.2).

2 Замыканием области называется множество точек пространства , в любой окрестности каждой из которых содержатся точки области D .

Пусть, например, D – некоторая открытая (граница не включается) область на плоскости xOy . Тогда замыкание области получится, если к области D присоединить ее границу Г .

2 Пусть в некоторой области D плоскости xOy задана функция , и пусть – некоторая точка замыкания области D (). Число А называется пределом функции в точке М 0 , если для любого числа e > 0 найдется такое число δ > 0, что для всех точек , отличных от точки М 0 и удаленных от нее меньше, чем на δ , выполнено неравенство .

2 Функция называется непрерывной в точке если она определена в этой точке () и имеет место равенство .

§9.3. Линии уровня функции двух переменных

2 Линии на плоскости xOy , заданные уравнениями , где С – произвольная константа, называются линиями уровня функции .

Линии уровня являются линиями пересечения поверхности, заданной функцией и плоскости z = C , параллельной плоскости xOy . С помощью линий уровня можно изучать форму поверхности, заданной функцией .

Пример 9.2. Найти линии уровня и определить форму поверхности, заданной уравнением .

Уравнения линий уровня в данном случае имеют вид . При C < 0 уравнение дает пустое множество решений (следовательно, вся поверхность расположена выше плоскости xOy ). При C = 0 уравнению линии уровня удовлетворяет только одна точка x = 0, y = 0 (с плоскостью xOy поверхность пересекается только вначале координат). При C > 0 линии уровня являются эллипсами , с полуосями и . Линии уровня, соответствующие различным значениям С , изображены на рис. 9.3. Поверхность, заданная уравнением , называется эллиптическим параболоидом (рис. 9.4).

§9.4. Частные производные первого порядка

Пусть в некоторой области D плоскости xOy задана функция , и – некоторая точка области D .

x

, (9.2)

2 Частной производной функции в точке по переменной y (обозначается или ) называется

, (9.3)
если данный предел существует и конечен.

2 Частной производной функции n переменных в точке по переменной x i называется

, (9.4)
если данный предел существует и конечен.

Как видно из формул (9.2) – (9.4), частные производные определяются аналогично тому, как определялась производная функции одной переменной. При вычислении предела приращение получает только одна из переменных, остальные переменные приращения не получают и остаются постоянными. Следовательно, частные производные можно вычислять по тем же правилам, что и обычные производные, обращаясь со всеми свободными переменными (кроме той, по которой производится дифференцирование) как с константами.

Задача 9.3. Найти частные производные функции

Решение. .

Задача 9.4. Найти частные производные функции .

Решение. При дифференцировании данной функции по переменной x мы пользуемся правилом дифференцирования степенной функции, а при нахождении частной производной по переменной y – правилом дифференцирования показательной функции:

Задача 9.5. Вычислить частные производные функции в точке .

Решение. Применяя правило дифференцирования сложной функции, найдем частные производные

Подставляя в частные производные координаты точки М , получим

§9.5. Градиент функции нескольких переменных.
Производная по направлению

2 Градиентом функции в точке называется вектор, составленный из частных производных данной функции, вычисленных в данной точке:

2 Производной функции в точке по направлению вектора называется проекция вектора градиента данной функции, вычисленного в точке М 0 , на данное направление

Вычисляя проекцию вектора на вектор в соответствие с формулой (2.6), получим

. (9.7)
Замечая, что , где a – угол, который вектор образует с осью OX , получим еще одну формулу для вычисления производной по направлению вектора

Задача 9.6. Найти градиент функции в точке М 0 (4; 2) и производную по направлению вектора

Решение. Найдем частные производные

Вычислим значения частных производных в точке М 0:

Градиент функции в точке М 0 найдем по формуле (9.5):

Задача 9.7. В точке М 0 (0; 1) вычислить производную функции по направлению биссектрисы второго координатного угла.

Решение. Найдем частные производные функции :

Вычислим значения частных производных и градиент функции в точке М 0:

Производную функции в точке М 0 по направлению биссектрисы второго координатного угла (данное направление составляет с осью OX угол a = 135°) найдем по формуле (9.8):

§9.6. Дифференциал функции нескольких переменных
и его применение к приближенным вычислениям

1 Если в точке функция имеет непрерывные частные производные и , то ее полное приращение при переходе от точки М 0 к точке может быть представлено в виде:

, (9.9)
где при , .

2 Выражение называется полным дифференциалом функции в точке .

Из формулы (9.9) следует, что дифференциал функции является главной линейной частью полного приращения функции . При достаточно млых Dx и Dy выражение существенно меньше дифференциала и им можно пренебречь. Таким образом, мы приходим к следующей приближенной формуле:

. (9.10)
Замечание. Формулой (9.10) можно пользоваться для приближенного вычисления значений функций только в точках , достаточно близких к точке . Чем меньше значение , тем точнее значение , найденное по формуле (9.9).

Пример 9.8. Вычислить приближенно, с помощью дифференциала.

Рассмотрим функцию . Требуется вычислить значение z 1 этой функции в точке (x 1 ; y 1) = (0,09; 6,95). Воспользуемся приближенной формулой (9.9), выбрав в качестве точки точку (0; 7). Тогда Dx = x 1 – x 0 = 0,09 – 0 = 0,09, Dy = y 1 – y 0 = 6,95 – 7 = – 0,05.

Следовательно,

§9.7. Частные производные высших порядков

Пусть в области D задана функция , имеющая в этой области непрерывные частные производные и . Таким образом, в области D мы получили две новые непрерывные функции двух переменных и . Если в некоторой точке области D функции и имеют частные производные как по переменной x , так и по переменой y , то эти производные называются производными второго порядка функции . Они обозначаются следующим образом:

1 Если в некоторой точке области D функция имеет непрерывные смешанные производные и , то в точке эти производные равны: . D , необходимо выполнение условий: D = 32 – 9 = 23.

Так как дискриминант больше нуля, то в точке М функция имеет экстремум. А именно, локальный минимум, поскольку А и С больше нуля. При этом

Называется Несобственным интегралом От функции F (X ) с бесконечным верхним пределом. Если этот предел существует и конечен, то несобственный интеграл называется Сходящимся . А если же он не существует или равен
± ¥, то этот несобственный интеграл называется Расходящимся.

Если F (X ) ≥ 0 для всех X A , то У несобственного интеграла (6.1) имеется очевидный геометрический смысл, вытекающий из геометрического смысла (4.3) обычного определенного интеграла. Действительно, согласно рис. 5.14

(6.2)

(6.3)

Здесь S ¥ - площадь бесконечно протяженной в направлении оси Ох криволинейной трапеции (рис. 5.15). Несмотря на свою бесконечную протяженность, она может оказаться и конечной. Но это может произойти, согласно рис. 5.15, лишь в случае, когда Y = F (X ) → 0 при X ¥ . Да и то, если функция Y = F (X ) → 0 при X ¥ достаточно быстро.

Пример 1. Найти площадь S ¥ , изображенную на рис. 5.16.

,
так как lnB ¥ при B ¥ .

Итак, S ¥ = ¥. И это несмотря на то, что функция при X ¥ . Несобственный интеграл , а значит, он расходится.

Пример 2. Найти площадь S ¥ , изображенную на рис. 5.17.

Здесь S ¥ = 1. То есть бесконечно протяженная площадь оказалась конечной. Это произошло потому, что подинтегральная функция при X ¥ достаточно быстро (по крайней мере, гораздо быстрее, чем подинтегральная функция в предыдущем примере). Несобственный интеграл (число), а значит, он сходится.

Пример 3 . Выяснить, сходится или расходится несобственный интеграл .

Решение . Вычислим это интеграл:

Не существует. Это очевидно, если вспомнить поведение графика функции Y = = SinX (синусоиды) при X ¥ . Таким образом, не существует, а значит, он расходится. Впрочем, это и не могло быть иначе, ибо подинтегральная функция cosX не стремится к нулю при Х → ¥ .

Заметим, что при вычислении несобственных интегралов типа , как и при вычислении обычных определенных интегралов , можно сразу применять формулу Ньютона-Лейбница:

Здесь

Действительно:

Если значение F (¥ ) существует и конечно, то согласно формуле (6.4) Ньютона-Лейбница сходится и несобственный интеграл .

Примечание. Совершенно аналогично интегралам с бесконечным верхним пределом можно рассматривать несобственные интегралы с бесконечным нижним пределом и даже с обоими бесконечными пределами интегрирования. То есть интегралы вида

Для их вычисления тоже можно применять формулу Ньютона-Лейбница.

Пример 4.

Итак, (число), то есть этот интеграл сходится. Его величина π равна площади S ¥ бесконечно протяженной в обе стороны фигуры, изображенной на рис. 5.18.

Заметим, что сам факт сходимости-расходимости несобственных интегралов с бесконечными пределами интегрирования не обязательно устанавливать с помощью прямого вычисления этих интегралов. Это вопрос часто можно решить и гораздо проще, сравнив данный несобственный интеграл с каким-либо другим, для которого сходимость-расходимость уже установлена.

Пусть, например, для всех имеет место неравенство F (X ) £ G (X ), Где Y = F (X ) И Y = G (X ) - Две непрерывные и неотрицательные функции (рис. 5.19). Тогда очевидно, что

Из неравенства (6.6) и рис. 5.19 очевидным образом следует так называемый Признак сравнения несобственных интегралов :

1) Если (число) - сходится, то и (число) - сходится, причем B

2) Если - расходится, то и - расходится.

3) Если - расходится, то - об этом интеграле ничего сказать нельзя.

4) Если (число) - сходится, то - об этом интеграле ничего сказать нельзя.

В качестве функции G (X ) , с которой на промежутке Сравнивают данную функцию F (X ), часто используют функцию , а в качестве интеграла сравнения - интеграл , учитывая при этом, что при A > 0 и любых α функция - положительная и непрерывная функция, и что

Пример 5.

Решение. Очевидно, что для всех X Î }

Рассказать друзьям