Карбоновые кислоты. Химические свойства предельных одноосновных карбоновых кислот Получение карбоновых кислот примеры

💖 Нравится? Поделись с друзьями ссылкой

Окисление насыщенных углеводородов кислородом на специальных катализаторах до карбоновых кислот осуществляют в промышленности, однако селективностью этот способ не отличается. Как правило, получаются смеси карбоновых кислот, поскольку при окислении происходит разрыв различных углерод-углеродных связей.

Значительно более селективным является окисление алкенов сильными окислителями. При нагревании алкенов, имеющих по одному атому водорода у каждого атома углерода двойной связи, со щелочным раствором перманганата калия образуется смесь двух карбоновых кислот. Если же алкен симметричный, то образуются две молекулы одной карбоновой кислоты. Такое же окисление можно осуществить и при нагревании алкенов с концентрированной азотной кислотой.

Аналогично при окислении щелочным раствором перманганата калия алкинов получают карбоновые кислоты. Так, например, уксусную кислоту можно получить, окисляя либо 2-бутен, либо 2-бутин.

Алкилбензолы окисляют до бензойной кислоты либо кислородом на катализаторах (в промышленности), либо нагреванием с перманганатом калия. Например, кипячение толуола с водным раствором перманганата калия с последующим подкислением раствора приводит к бензойной кислоте.

Карбоновые кислоты могут быть получены также окислением первичных спиртов или альдегидов. В качестве окислителей обычно используют соединения хрома в высшей степени окисления, например, хромовый ангидрид, перманганат калия в щелочной среде, концентрированную азотную кислоту. Альдегиды легко окисляются и другими окислителями, напрмер, аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

1.2. Синтез карбоновых кислот из галогенопроизводных

1.2.1.Синтез карбоновых кислот через нитрилы

Алкилгалогениды взаимодействием с цианидом натрия превращают в алкилцианиды, которые являются нитрилами карбоновых кислот. Последние гидролизуют в кислой среде до карбоновых кислот.

Таким образом, происходит двухстадийное замещение атома галогена в молекуле галогенопроизводного на карбоксильную группу. Так, для получения валериановой кислоты (5 атомов углерода) необходимо исходить из бутилгалогенида.

1-бромбутан нитрил валериановая кислота

валериановой кислоты

1.2.2. Синтез карбоновых кислот реакцией Гриньяра

Реактивы Гриньяра, которые получают из галогенопроизводных взаимодействием с металлическим магнием, представляют собой нуклеофильные реагенты. Поэтому для синтеза из них карбоновых кислот используют реакцию карбоксилирования с помощью электрофильного диоксида углерода.

Для получения этим методом бензойной кислоты в качестве исходного галогенопроизводного необходимо взять, например, бромбензол, который реакцией с магнием, последующим взаимодействием фенилмагнийбромида с диоксидом углерода и заключительным гидролизом магниевой соли превращают в бензойную кислоту.

1.3. Гидролиз производных карбоновых кислот

Подобно нитрилам и солям, о гидролизе которых речь уже шла, и другие производные карбоновых кислот гидролизуются до карбоновых кислот. Реакции могут катализироваться как кислотами, так и щелочами. Например, при гидролизе метилового эфира пропановой кислоты, катализируемом сильной минеральной кислотой, образуется пропановая кислота и метанол.

При нагревании ацетанилида (фениламида уксусной кислоты) с водным раствором едкого натра получается ацетат натрия и анилин.

Гидролиз молекулы ангидрида бензойной кислоты приводит к образованию двух молекул бензойной кислоты.

Подробнее о катализе и механизме гидролиза речь будет идти в разделах, посвященных производным карбоновых кислот

13.1.1. Окисление углеводородов . Существует два способа: окисление низших алканов C 4 -C 8 преимущественно до уксусной кислоты и окисление твердого парафина с образованием синтетических жирных кислот (СЖК) с прямой цепью углеродных атомов С 10 -С 20 , являющихся сырьем для синтеза ПАВ (поверхностно-активных веществ).

Процесс протекает в жидкой фазе при нагревании или в присутствии катализаторов. При окислении алканов происходит деструкция по связям между вторичными углеродными атомами, поэтому из н-бутана образуется главным образом уксусная кислота, а в качестве побочных продуктов – метилэтилкетон и этилацетат.

13.1.2.Синтезы на основе оксида углерода (II). Карбоновые кислоты получают на основе оксида углерода реакцией карбонилирования:

Присоединение по двойной связи при кислотном катализе всегда протекает по правилу Марковникова, вследствие этого только из этилена получается неразветвленная кислота, а из его гомологов - α-метилзамещенные кислоты. Особый интерес данный метод представляет для синтеза кислот с третичным радикалом (неокислот) из разветвленных олефинов (реакция Коха):

Механизм реакции состоит в предварительном протонировании алкена кислотой с образованием иона карбения, его взаимодействия с СО с получением ацилий – катиона и реакции последнего с водой с образованием карбоновой кислоты:

Неокислоты и их соли обладают очень высокой растворимостью и вязкостью, а их сложные эфиры - стабильностью к гидролизу, что обеспечивает им широкое применение в ряде отраслей.

Карбонилирование спиртов катализируется комплексами металлов (Ni, Со, Fe, Pd). Процесс реализован в промышленности для синтеза уксусной кислоты из метанола и характеризуется высокими экономическими показателями.



Кислоты также получают окислением альдегидов (продукт оксосинтеза).

Лабораторные способы получения карбоновых кислот

Окисление алканов.

Окисление алкенов.

13.2.3. Окисление первичных спиртов .

13.2.4. Окисление альдегидов и кетонов . Альдегиды окисляются значительно легче, чем кетоны. Кроме того, окисление альдегидов приводит к образованию кислот с тем же числом углеродных атомов, в то время как окисление кетонов протекает с разрывом углерод – углеродных связей (образуются две кислоты или кислота и кетон):

Окислителями служат перманганат или бихромат калия. Окисление кетонов требует более жестких условий, чем альдегидов.

13.2.5. Гидролиз нитрилов. Нитрилы получают взаимодействием галогеналканов с цианистым калием, проводят гидролиз водными растворами кислот или щелочей. В кислой среде азот выделяется в виде соли аммония:

в щелочной - в виде гидроксида аммония, который разлагается с выделением аммиака, кислота же получается в виде соли:

13.2.6. Синтез Гриньяра. При взаимодействии магнийорганических соединений с диоксидом углерода образуются соли карбоновых кислот:

Под действием сильной кислоты (обычно НСl) соль превращается в кислоту:

Гидролиз жиров

Жиры - сложные эфиры карбоновых кислот и глицерина (триглицериды). Карбоновые кислоты, входящие в состав жиров имеют углеродную цепь от 3 до 18 углеродных атомов.

Кипячение жиров или масел с водными растворами щелочей (NaOH, КОН) приводит к получению солей карбоновых кислот и глицерина.

Эта операция называется омылением, так как соли карбоновых кислот используют для изготовления мыла.

Гидролиз производных карбоновых кислот.

Физические свойства

Низшие кислоты с числом атомов углерода до 3 – легколетучие бесцветные жидкости с характерным острым запахом, смешиваются с водой в любых соотношениях. Большинство кислот С 4 – С 9 – маслянистые жидкости с неприятным запахом. Растворимость в воде сильно уменьшается с ростом молярной массы. Кислоты от С 10 и выше – твердые вещества, нерастворимые в воде. Плотности муравьиной и уксусной кислот больше единицы, остальных – меньше единицы. Температура кипения возрастает с увеличением молярной массы, при одном и том же числе углеродных атомов кислоты нормального строения кипят выше, чем кислоты с разветвленным углеродным скелетом. Сравнение температур кипения кислот и спиртов с одинаковым числом углеродных атомов показало, что кислоты кипят при значительно более высоких температурах, чем спирты. Это свидетельствует о более высокой ассоциации молекул кислот по сравнению со спиртами за счет образования водородных связей.

Карбоновые кислоты, как и спирты, способны образовывать водородные связи. Если акцептором является достаточно сильное основание, образование водородной связи предшествует полному переносу протона к основанию. По Бренстеду, соединение, являющееся донором водорода, считают «кислотой». Будет ли данное соединение «донором водорода» («кислотой»), зависит от природы «акцептора водорода» («основания»). Чем сильнее основание, тем больше вероятность того, что данное соединение будет вести себя по отношению к нему как кислота:

Межмолекулярные водородные связи, возникающие между молекулами карбоновых кислот, настолько прочны, что даже в газообразном состоянии значительная часть молекул существует в виде димеров:

С ростом углеводородной цепи способность кислот к образованию водородных связей уменьшается.

Как уже было сказано в гл. 8, сильные окислители, такие, как перманганат калия, превращают первичные спирты в карбоновые кислоты. Альдегиды окисляются еще легче, чем спирты:

Например:

Окисление боковой цепи ароматических соединений

Ароматические соединения, имеющие в боковой цепи атом водорода в -положении к бензольному кольцу, в жестких условиях окисляются до карбоновых кислот. При этом боковая цепь, независимо от числа атомов углерода, превращается в карбоксильную группу СООН (подробнее об этом речь шла в гл. 9):

Например:

Синтезы с участием малонового эфира

Широкое применение в синтезе карбоновых кислот и построении нового углеродного скелета находят реакции с участием малонового эфира. Последовательность реакций состоит из алкилирования диэтилового эфира малоновой кислоты (его часто называют просто малоновым) с последующим декарбоксилированием. Первая стадия синтеза такова:

Основание используется для отрыва протона из -положения диэтилмалоната. При этом образуется нуклеофил, способный взаимодействовать с галогеналканом . В результате реакции замещения радикал R оказывается соединенным с атомом углерода, который несет отрицательный заряд. При необходимости эту процедуру можно повторить, введя в малоновый эфир второй заместитель

После введения в малоновый эфир одного или двух заместителей полученное вещество может быть подвергнуто различным превращениям. Ниже показан интересующий нас путь получения монокарбоновых кислот:

Алкилированный малоновый эфир гидролизуют до соответствующей дикарбоновой кислоты. (Подробнее о гидролизе сложных эфиров речь пойдет ниже.) При нагревании дикарбоновая кислота легко теряет молекулу диоксида углерода и превращается в монокарбоновую кислоту. Процесс удаления карбоксильной группы называется декарбоксилированием.

Примером такого синтеза карбоновых кислот является синтез вальпроевой кислоты - эффективного противосудорожного препарата:

Карбоксилирование реактивов Гриньяра

Карбоновые кислоты можно получать из реактивов Гриньяра и диоксида углерода (см. гл. 3):

В этой реакции образуется кислота, в молекуле которой имеется на один углеродный атом больше, чем в исходных галогеналкане и реактиве Гриньяра.

Карбоновые кислоты получают окислением первичных спиртов или альдегидов, энергичным окислением алкилбензолов или карбоксилированием реактивов Гриньяра. Синтезы с малоновым эфиром используют для получения карбоновых кислот с более длинным углеродным скелетом, чем у любого из исходных соединений.



  • 1. Общие и специфические способы получения карбоновых кислот.

1. Способы получения:

1. Окисление альдегидов и первичных спиртов - общий способ получения карбоновых кислот. В качестве окислителей применяются K М n О 4 и K 2 С r 2 О 7 .

R - CH 2 - OH → R - CH = O → R - CO - OH

спирт альдегид кислота


2. Гидролиз галогензамещенных углеводородов, содержащих три атома галогена у одного атома углерода. При этом образуются спирты, содержащие группы ОН у одного атома углерода - такие спирты неустойчивы и отщепляют воду с образованием карбоновой кислоты:

  • R-CCl 3 → [ R - C (OH) 3 ]→ R - COOH + Н 2 О

3. Получение карбоновых кислот из цианидов (нитрилов): дополнительный атом углерода вводят в состав молекулы, используя реакцию замещения галогена в молекуле галогенуглеводорода цианидом натрия, например:

  • СН 3 -В r + NaCN → CH 3 - CN + NaBr .

метилцианид

Образующийся нитрил уксусной кислоты (метилцианид) при нагревании легко гидролизуется с образованием ацетата аммония:

  • CH 3 CN + 2Н 2 О → CH 3 COONH 4 .

ацетат аммония

При подкислении раствора выделяется кислота:

  • CH 3 COONH 4 + HCl → СН 3 СООН + NH 4 Cl .

уксусная кислота


Для отдельных кислот существуют специфические способы получения.

  • Муравьиную кислоту получают нагреванием оксида углерода (II) с порошкообразным гидроксидом натрия под давлением и обработкой полученного формиата натрия сильной кислотой:

200 °С, Р H 2 SO 4

  • NaOH + СО → HCOONa → НСООН

формиат натрия муравьиная кислота


  • Уксусную кислоту получают каталитическим окислением бутана кислородом воздуха:

2С 4 Н 10 + 5 O 2 → 4СН 3 СООН + 2Н 2 О.


  • Для получения бензойной кислоты можно использовать окисление монозамещенных гомологов бензола кислым раствором перманганата калия:

5С 6 Н 5 -СН 3 + 6 KMnO 4 + 9 H 2 SO 4 = 5С 6 Н 5 СООН + 3 K 2 SO 4 + 6 MnSO 4 + 14 H 2 O .

  • Бензойную кислоту можно получить из бензальдегида с помощью реакции Канниццаро. В этой реакции бензальдегид обрабатывают 40-60 %-ным раствором гидроксида натрия при комнатной температуре. Одновременное окисление и восстановление приводит к образованию бензойной кислоты и фенилметанола (бензилового спирта):

2. Важнейшие представители карбоновых кислот, их биологическая роль, способы получения, применение.

  • Муравьиная кислота – бесцветная едкая жидкость с острым запахом, смешивающаяся с водой. Впервые выделена в Х VII в. из красных муравьев перегонкой с водяным паром. В природе встречается в свободном состоянии также в крапиве.
  • Муравьиная кислота (HCOOH) - надежное оружие рыжих муравьев. Ядовитая железа такого муравья содержит от 20 до 70 % муравьиной кислоты, это главный компонент его «оборонного средства». Именно им муравьи парализуют добычу.
  • Источники накопления муравьиной кислоты в атмосфере - выхлопные газы автомобилей и различные промышленные дымы, претерпевающие химические превращения под действием солнечных лучей.
  • Получают муравьиную кислоту из гидроксида натрия и оксида углерода нагреванием под давлением (см. выше).

  • Уксусная кислота (CH 3 COOH) – одно из первых органических соединений, которое было выделено в относительно чистом виде и описано уже в ХI в. алхимиками как продукт перегонки натурального уксуса.
  • В 1845 г. немецкий химик А. Кольбе осуществил ее синтез. Водный раствор этой кислоты известен как столовый уксус. Безводная уксусная кислота затвердевает при температуре 17 ºС. Ее часто называют «ледяной» уксусной кислотой. Метод приготовления ледяной уксусной кислоты, вошедший в Российскую фармакопею, был разработан в 1784 г.

  • Уксусная кислота представляет собой бесцветную жидкость с острым запахом и кислым вкусом, неограниченно смешивающуюся с водой.
  • Безводную уксусную кислоту называют «ледяной», так как при 17 °С она замерзает и образует кристаллы, подобные льду. Обычная уксусная кислота, содержащая 2-3 % воды, замерзает при температуре ниже 13 °С.
  • Уксусная кислота известна издавна. Ее разбавленные водные растворы образуются при брожении вина. При перегонке водных растворов получают приблизительно 80 %-ную кислоту («уксусную эссенцию»), которую применяют для пищевых целей.

  • Синтетическую уксусную кислоту для нужд химической промышленности получают различными методами.
  • Один из методов заключается в окислении уксусного альдегида, который, в свою очередь, получают из этилена окислением в присутствии РdСl 2 или из ацетилена.
  • Второй метод заключается в карбонилировании метанола.
  • Третий метод – каталитическое окисление бутана.

  • Уксусную кислоту используют в качестве растворителя и как исходное вещество для синтеза производных уксусной кислоты (ацетилхлорида, ацетангидрида, амидов, сложных эфиров).
  • Соли уксусной кислоты (ацетаты) применяют в текстильной промышленности в качестве протравителей и в синтезе как основные катализаторы.

  • Пальмитиновая кислота ( C 16 H 32 O 2 , или CH 3 (CH 2 ) 14 COOH) – представляет собой бесцветное кристаллическое вещество со слабым запахом стеарина, в воде не растворяется. Широко распространена в природе, в виде сложных эфиров с глицерином входит в состав жиров.
  • Получают пальмитиновую кислоту обработкой жиров щелочью (гидролиз, омыление). При этом образуются соли (пальмитаты), после подкисления которых осаждается сама кислота.
  • Пальмитиновая кислота и ее производные используются в качестве поверхностно-активных веществ (моющих средств и др.). Ее натриевая соль называется мылом.

  • Стеариновая кислота (C 18 H 36 O 2 , или CH 3 (CH 2 ) 16 COOH) – бесцветное кристаллическое вещество со слабым запахом стеарина. Ее эфиры с глицерином входят в состав жиров.
  • Получают стеариновую кислоту омылением жиров. Обычно образуется смесь стеариновой и пальмитиновой кислот, которую можно разделить на составные части. Стеариновую кислоту в смеси с пальмитиновой используют в производстве свечей, их натриевые соли являются обыкновенным мылом. В органическом синтезе стеариновую кислоту используют для получения других поверхностно-активных веществ.
  • Производные пальмитиновой и стеариновой кислот принадлежат к важным природным веществам – липидам.

  • Акриловая кислота (CH 2 =CHCOOH) – бесцветная жидкость с острым запахом; t кип = 141 ºС.
  • Во всех отношениях смешивается с водой, спиртом и эфиром.
  • В промышленности ее получают из ацетилена:

C 2 H 2 + CO + H 2 О = С 2 Н з СООН.

  • Соли акриловой кислоты используют как добавки к печатным краскам, пастам и некоторым лакам. В промышленности в больших количествах производят полимеры эфиров акриловой кислоты.

  • Метакриловая кислота ( a-акриловая кислота, CH 2 C (CH 3 ) – СООН ) – бесцветная жидкость с резким запахом; растворима в воде и органических растворителях.
  • Метакриловую кислоту получают присоединением синильной кислоты (HC N) к ацетону с последующей дегидратацией до лонитрила CH 2 C (CH 3)-C, которую подвергают омылению.
  • Метакриловая кислота и ее производные применяют для получения технически важных полимерных продуктов, органического стекла, также используют в производстве каучуков, безосколочного стекла, ионообменных смол; соли полиметакриловой кислоты служат эмульгаторами.

  • Олеиновая кислота ( CH 3 ( CH 2 ) 7 CH = CH ( CH 2 ) 7 COOH ) – одноосновная ненасыщенная карбоновая кислота; бесцветная вязкая жидкость.
  • Олеиновая кислота в виде триглицерида содержится практически во всех растительных маслах и животных жирах.
  • Получают кислоту главным образом из оливкового масла, в котором содержание ее достигает 70-85 %.
  • Эфиры олеиновой кислоты применяют при получении лакокрасочных материалов, в производстве косметических препаратов, олеинового спирта и др.; сама кислота и некоторые ее эфиры используются в качестве пластификаторов - веществ, повышающих пластичность (например, в производстве резины).
  • Соли олеиновой кислоты наряду с солями др. высших жирных кислот являются мылами.

  • Линолевая кислота С 17 H 31 COOH, линоленовая кислота (CH 3 (CH 2 CH=CH) 3 (CH 2 )7COOH) – одноосновные с двумя и тремя изолированными двойными связями; бесцветные маслообразные жидкости.
  • Линолевая кислота (арахидоновая кислота) и линоленовая кислота относятся к незаменимым жирным кислотам, необходимым для нормальной жизнедеятельности; в организм человека и животных эти кислоты поступают с пищей, главным образом в виде сложных липидов - триглицеридов и фосфатидов .
  • В виде триглицерида кислоты в значительных количествах (до 40-60%) входят в состав многих масел растительных и животных жиров, например соевого, хлопкового, подсолнечного, льняного, конопляного масел, китового жира.

Получение карбоновых кислот

I . В промышленности

1. Выделяют из природных продуктов

(жиров, восков, эфирных и растительных масел)

2. Окисление алканов:

2CH 4 + + 3O 2 t,kat → 2HCOOH + 2H 2 O

метан муравьиная кислота

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 t,kat,p → 4CH 3 COOH + 2H 2 O

н-бутан уксусная кислота

3. Окисление алкенов:

CH 2 =CH 2 + O 2 t,kat → CH 3 COOH

этилен

СH 3 -CH=CH 2 + 4[O] t,kat → CH 3 COOH + HCOOH (уксусная кислота+муравьиная кислота )

4. Окисление гомологов бензола (получение бензойной кислоты):

C 6 H 5 -C n H 2n+1 + 3n[O] KMnO4,H+ → C 6 H 5 -COOH + (n-1)CO 2 + nH 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 -COOH + 3K 2 SO 4 + 6MnSO 4 + 14H 2 O

толуол бензойная кислота

5. Получение муравьиной кислоты:

1 стадия: CO + NaOH t , p → HCOONa ( формиат натрия – соль )

2 стадия : HCOONa + H 2 SO 4 → HCOOH + NaHSO 4

6. Получение уксусной кислоты:

CH 3 OH + CO t,p → CH 3 COOH

Метанол

II . В лаборатории

1. Гидролиз сложных эфиров:

2. Из солей карбоновых кислот :

R-COONa + HCl → R-COOH + NaCl

3. Растворением ангидридов карбоновых кислот в воде:

(R-CO) 2 O + H 2 O → 2 R-COOH

4. Щелочной гидролиз галоген производных карбоновых кислот:

III . Общие способы получения карбоновых кислот

1. Окисление альдегидов:

R-COH + [O] → R-COOH

Например, реакция «Серебряного зеркала» или окисление гидроксидом меди (II ) – качественные реакции альдегидов

2. Окисление спиртов:

R-CH 2 -OH + 2[O] t,kat → R-COOH + H 2 O

3. Гидролиз галогензамещённых углеводородов, содержащих три атома галогена у одного атома углерода.

4. Из цианидов (нитрилов) – способ позволяет наращивать углеродную цепь:

СH 3 -Br + Na-C≡N → CH 3 -CN + NaBr

CH 3 —CN метилцианид (нитрил уксусной кислоты)

СH 3 -CN + 2H 2 O t → CH 3 COONH 4

ацетат аммония

CH 3 COONH 4 + HCl → CH 3 COOH + NH 4 Cl

5. Использование реактива Гриньяра

Рассказать друзьям