Прокариоты их роль в биосфере земли. Общее понятие о биосфере

💖 Нравится? Поделись с друзьями ссылкой

Ответ от КоШкА[гуру]
Прокариоты иным образом осуществляют фотосинтез, нежели растения. Бактерии используют в этом процессе пигмент бактериохлорин
и не выделяют кислород в окружающую среду. Фотоавтотрофные архебактерии осуществляют фотосинтез при помощи бактериородопсина, а цианобактерии помимо хлорофилла имеют еще дополнительно два других пигмента: фикоцианин и фикоэритрин. Указанные факты показывают, что природа предусмотрела для реализации синтеза первичного органического вещества несколько пигментов, которые существенно расширяют спектральный состав излучения, доступного для фотосинтеза. Среди прокариот значительно распространен хемосинтез. Кроме того, среди бактериальных организмов имеются азотофиксирующие формы: это единственная на нашей планете группа живых организмов, которые способны усваивать азот непосредственно из атмосферного воздуха и таким образом вовлекать молекулярный азот в биологический цикл.
Бактерии и синезеленые включают в состав органического вещества до 90% всего входящего в биогенный цикл азота; оставшиеся же 10% азота связываются грозовыми электрическими разрядами. Из сказанного следует, что важнейшей функцией прокариот в биосфере является вовлечение в круговорот элементов из косной (неживой) природы.
В то же время прокариоты имеют еще и другую важнейшую функцию, прямо противоположную первой: возвращение неорганических веществ в окружающую среду путем разрушения (минерализации) органических соединений. Гетеротрофные бактерии функционируют не только в почве и воде, но и в кишечнике очень многих животных, где они интенсивно воздействуют переводу сложных соединений углеводов в более простые формы.
На уровне биосферы в целом прокариоты, в первую очередь бактерии, обладают еще одной очень важной функцией - концентрационной. Исследованиями установлено, что микроорганизмы способны активно извлекать из окружающей среды определенные элементы даже при крайне низких их концентрациях. Например, в продуктах жизнедеятельности некоторых микроорганизмов содержание железа, ванадия, марганца и ряда других в сотни раз выше, чем в окружающей их среде. Деятельностью бактерий собственно и созданы естественные месторождения этих элементов.
Свойства и функции прокариот настолько разнообразны, что в принципе они способны создавать устойчиво функционирующие свойственные (т. е. только при своем участии) экосистемы. Недаром в истории жизни на Земле почти 2 млрд. лет она и была представлена прокариотами. "Именно цианобактерии первыми заселили атолл Бикини после ядерного взрыва и остров Суррей, возникший в 1963 году в результате извержения подводного вулкана южнее Исландии. Высокая устойчивость к внешним воздействиям (ряд видов прокариот выдерживают температуру выше 100° С, кислую среду с рН около 1, соленость с содержанием в растворе 20-30% галита NaCl) превращает эту группу в представителей живого вещества в самых экстремальных условиях" (Шилов И. А. , 2000, с. 56)
еще смотри тут:
ссылка

Термин «биосфера » был введен в научную литературу в конце XIX в. геологом Э. Зюссом для обозначения особой земной оболочки, населенной живыми организмами. Целостное учение о биосфере было создано в первой половине XX в. крупнейшим естествоиспытателем-геохимиком В. И. Вернадским.

На основании анализа истории атомов в земной коре и в ее верхней, охваченной жизнью, оболочке Вернадский пришел к выводам исключительного теоретического и, как впоследствии стало ясно, практического значения. Он показал, что биосфера не только населена живыми организмами, но и в существенной степени геохимически ими переработана; это не только среда жизни, но и продукт жизнедеятельности обитавших на земле во все геологические времена живых организмов - живого вещества планеты. Это положение, имеющее исключительно большое значение для геохимии, А. И. Перельман предложил именовать «законом Вернадского» и сформулировал его так: «Миграция химических элементов в биосфере осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (О 2 , СО 2 , H 2 S и т. д.) обусловлены живым веществом, как тем, которое в настоящее время населяет данную систему, так и тем, которое действовало в биосфере в течение геологической истории» (Перельман, 1979, с. 215).

На раннем этапе развития биологии существовало представление, что все живое, обитающее на Земле, подразделяется на два «царства» организмов: флору и фауну, или царство растений - Plantae и царство животных - Animalia. В XVIII-XIX вв. с момента открытия и последующего интенсивного изучения мира микроорганизмов стало необходимым выделение нового третьего царства живых существ, названного Геккелем (1866) царством протистов. Появление новых разделов биологии, в частности молекулярной биологии, усовершенствование техники микроскопирования, применение электронной микроскопии, разработка новых современных методов исследования микроорганизмов способствовали дальнейшему выделению новых царств живой природы; в современных классификациях обособляются пять царств, объединенных по типу строения клетки в две группы (R. Murray, 1968; R. Whittaker, 1969):

царство животных - Animalia

Эукариоты царство растений - Plantae

царство протистов - Protista

царство грибов - Mycota

Прокариоты царство бактерий - Procaryota

Прокариотический тип микробной клетки характерен для бактерий, актиномицетов и синезеленых водорослей. Ее основная особенность - отсутствие четкой границы между ядерным веществом, цитоплазмой и отсутствие ядерной мембраны. Область ядра (так называемый нуклеоид) заполнена ДНК, не связанной с белком и не образующей структур, похожих на хромосомы эукариотов. Нет также митохондрий и хлоропла- стов, а клеточная стенка состоит из гетерополимерного вещества, которое не обнаружено ни у одного из эукариотических организмов. В цитоплазме фотосинтезирующих бактерий имеются тилакоиды, содержащие пигменты (хлорофиллы и каротиноиды), с помощью которых осуществляется фотосинтез. У некоторых видов бактерий в клетках накапливаются гранулы жира и волютина.

Эукариотический тип клетки свойствен грибам, водорослям, простейшим (имеет сходство с клетками растений, животных и человека). Она более сложна: ядро с двухслойной ядерной пористой мембраной отделено от цитоплазмы, в нем находится одно-два ядрышка, внутри которых синтезируется РНК (рибонуклеиновая кислота) и содержатся хромосомы - носители наследственной информации, состоящие из ДНК и белка. В цитоплазме есть также митохондрии (участвующие в процессах дыхания) и у водорослей хлоропласты (преобразующие лучистую энергию в химическую).

По данным абсолютной геохронологии и палеонтологии, использующей новейшие методы биохимии, 4-3,5 млрд. лет назад в архее уже существовала жизнь. При глубоком опорном бурении, поставленном в СССР на Русской платформе, в метаморфизованных осадочных породах архея обнаружено много углеродистых продуктов преобразования первых фотосинтезирующих организмов - синезеленых водорослей и мельчайших органических телец бактериального происхождения. Эти прокариотические организмы - бактерии и цианофиты, появившиеся еще в бескислородной атмосфере (но обладающие фотосинтетическим аппаратом) - единственные обитатели Земли в течение более 1 млрд. лет, были первыми продуцентами свободного кислорода в ее атмосфере.

В конце архея и начале протерозоя - 2,6-2,2 млрд. лет назад - атмосфера Земли уже содержала достаточно кислорода для осуществления окислительных процессов. В породах этого возраста обнаружены сульфаты (продукты окисления сульфидов), латеритные бокситоносные формации, содержащие окислы Fe (Сидоренко, Теняков и др.). В породах протерозоя, возраст которых 2 млрд. лет, обнаружены железобактерии (Заварзин, 1972). Таким образом, уже в архее и нижнем протерозое в результате газовых и окислительных функций микроорганизмов была преобразована населенная ими сфера Земли настолько, что она приобрела геохимические черты современной биосферы.

Наличие свободного кислорода в атмосфере стало условием для развития многообразных форм жизни - эукариотных простейших и многоклеточных растений и животных. На схеме эволюции органического мира, по представлениям палеонтолога академика Б. С. Соколова, показаны основные этапы развития жизни не только в палеозое и мезозое (изучением которых значительное время занималась палеонтология), но и в архее, афебии (среднем и нижнем протерозое) - длительном периоде истории Земли, когда господствовали простейшие организмы, а более сложные появились в рифее (верхнем протерозое). Древнейшие бактерии, синезеленые водоросли (цианофиты), грибы, простейшие, с деятельностью которых связано формирование биосферы, были во все геологические времена и продолжают существовать сегодня.

С развитием и дифференциацией жизненных форм осваивались все экологические ниши биосферы, все многообразнее становилась их геохимическая деятельность. Наряду с газовыми и окислительно-восстановительными функциями приобрели колоссальное планетарное значение концентрационные функции живых организмов, особенно ярко проявившиеся в отношении С, Са, Si.

Фотосинтетическая деятельность организмов и концентрация углерода и солнечной энергии в форме органических веществ определили глобальное распространение формации углеродисто-кремнистых и горючих сланцев в протерозое и палеозое. Развитие в кембрии морской фауны с известковым, фосфатным и кремнистым скелетом положило начало накоплению мощных свит органогенных пород, которое продолжалось во все последующие геологические эпохи. Формирование этих пород в значительной мере связано с деятельностью микроорганизмов: литифицированные клетки коколитофоридов обнаружены во всех известковых осадках; скопления кремневых скелетов диатомовых водорослей и радиолярий образуют диатомиты и трепелы.

Разнообразные геохимические функции микроорганизмов, их высокая ферментативная активность существенно влияют на геохимические процессы и современной биосферы.

Биосфера включает несколько геосфер: тропосферу, гидросферу (Мировой океан), педосферу и верхнюю часть литосферы - кору и зону выветривания, толщи осадочных пород до границ распространения жизни.

Живое вещество распределено в биосфере неравномерно; места наибольшей концентрации живых организмов и разнообразия форм - почвы, донные отложения озер, приливно-отливные зоны морских побережий и мелководного шельфа, верхний эвфотический слой вод морей и океанов. По мере удаления от поверхности Земли плотность жизни и разнообразие видов уменьшаются. Наиболее глубоко от поверхности Земли проникает жизнь в Мировом океане: обитаемы вся толща воды и доступная для наблюдений часть донных осадков; на дне глубочайших океанических впадин, таких как Марианский (11 022 м) и Филиппинский желоба (свыше 10 000 м) и других, существует своеобразная абиссальная фауна, разнообразная микрофлора.

На суше живые клетки микроорганизмов обнаружены в толще литосферы на меньшей глубине: при бурении скважин в подземных водах на 1500-2000 м, в нефтеносных водах - на 4500 м. Проникновению организмов в глубь литосферы препятствуют температуры, превышающие 100° С.

Верхние пределы биосферы, по-видимому, совпадают с границей тропосферы (11 000 м над ур. моря); не исключено попадание микроорганизмов в стратосферу. Однако активная жизнедеятельность на больших абсолютных высотах ограничивается не столько низкими температурами, сколько недостатком жидкой воды и углекислоты: парциальное давление СO 2 на высоте 5600-5700 м в 2 раза меньше, чем на уровне моря. Живые, активно развивающиеся водоросли, грибы, бактерии обнаружены в горах на высотах 6200-6500 м, где они распространены не только на скалах, но и на поверхности и в толще фирна и льда.

Следовательно, микроорганизмы расселены в пределах всей биосферы и являются индикаторами ее нижней и верхней границы: они развиваются в широком диапазоне экологических условий, образуют колоссальные сгущения в местах общей концентрации жизни и заполняют экологические ниши в экстремальных условиях, где жизнь высших организмов невозможна.

Столь широкому их распространению способствуют, во-первых, малая масса и размеры бактерий - 1-2 мкм, клеток дрожжей, спор грибов - около 10 мкм. С водой они проникают в тончайшие волосные трещины пород, достигая глубоких водоносных горизонтов, поднимаются к верхним границам тропосферы, увлекаемые воздушными потоками, залетают в стратосферу, совершают глобальные перемещения и заселяют ледники Гренландии и Антарктиды.

Микроорганизмы очень выносливы, переносят сильное иссушение и не теряют при этом жизнеспособности, в живых клетках содержится 80-85% воды. Высохшие споры плесневых грибов, некоторых бацилл, содержащие лишь 40% воды, сохраняют способность к прорастанию 10-20 лет. Неспороносные, микроорганизмы выдерживают высушивание в течение нескольких месяцев.

В высохшем состоянии микроорганизмы устойчивы к воздействию прямых солнечных лучей и высоких температур, поэтому обильная микрофлора обитает на поверхности почв, скал и обломков пород в пустынях.

Подавляющее большинство микроорганизмов хорошо переносит низкие температуры. Эксперименты, проведенные в лабораториях (Беккерель, 1925), показали, что споры бактерий и грибов, находившиеся в течение полугода и более при температуре жидкого воздуха (-190°), не погибали и сохраняли способность к прорастанию. При откачке воздуха, в разреженной атмосфере они выдерживали и более низкие температуры. Свидетельство выносливости микроорганизмов к низким температурам - их широкая распространенность в нивальном поясе гор, полярных областях, вечномерзлых горизонтах почв и грунтов. Многие микроорганизмы способны переходить при неблагоприятных условиях в состояние анабиоза. При малейшем улучшении внешней среды они возвращаются к жизни: начинается усвоение воды, углекислоты, быстрое размножение, например, деление микрококков происходит каждые полчаса. В местах концентрации жизни миллионы и миллиарды клеток различных микроорганизмов населяют каждый кубический сантиметр природных вод, почв и донных осадков.

Повсеместное распространение микроорганизмов, большая скорость жизненных циклов наряду с разнообразием выполняемых функций обусловливают их исключительную роль в геохимических процессах биосферы. Изучение геохимических функций живого вещества в биосфере - это основная задача биогеохимии, основал которую В. И. Вернадский; ее интенсивное развитие началось с середины XX в., когда в связи с всевозрастающей техногенной деятельностью человечества встали проблемы охраны окружающей среды.

Все геохимические функции микроорганизмов в биосфере можно с определенной долей условности разделить на следующие виды:

1) ассимиляционные - по отношению к газам атмосферы и создание органического вещества;

2) деструкционные - по отношению к органическому веществу;

3) газовые - регулирование газового режима почв, водоемов, приземной атмосферы;

4) окислительно-восстановительные - по отношению к макро — и микроэлементам с переменной валентностью;

5) деструкционные - по отношению к горным породам и минералам;

6) аккумулятивные функции и создание биогенных минералов и горных пород.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

«Участие прокариот в круговороте серы»

Нижний Новгород 2010

Введение

Прокариоты (бактерии и археи) имеют исключительное значение для жизни на Земле – им принадлежит основополагающая роль в циклических превращениях основных элементов, необходимых для жизни (углерод, кислород, азот, сера, фосфор). Циклические превращения элементов, из которых построены живые организмы, в совокупности представляют круговорот веществ. В настоящее время неоспоримо доказано, что определенные этапы циклов осуществляют исключительно прокариоты, обеспечивая замкнутость циклов основных биогенных элементов в биосфере. По В.И. Вернадскому (один из основоположников учения о биосфере), «биосфера представляет оболочку жизни – область существования живого вещества».

1. Круговорот серы

Сера – биогенный элемент, необходимый компонент живой материи. Она содержится в белках в составе аминокислот, содержание серы в белках составляет 0,8–2,4%. Сера также входит в состав витаминов, гликозидов, коферментов, имеется в растительных эфирных маслах. Сера в изобилии присутствует в земной коре, в углях, сланцах, нефтях, природных газах.

Сера относится к элементам с переменной валентностью. Это обеспечивает ее подвижность. В виде неорганических соединений сера бывает в окисленной форме (сульфаты, политионаты), восстановленной форме (сульфиды) и молекулярной, осуществляя активный окислительно-восстановительный цикл. В природе сера претерпевает разнообразные химические и биологические превращения, переходя из неорганических соединений в органические и обратно, меняя валентность в пределах от – 2 до +6.

Циклические превращения соединений серы называются круговоротом серы.

Цикл превращения серы включает окислительные и восстановительные звенья, а также превращения серы без изменения ее валентности. Окислительная часть круговорота серы включает стадии, которые могут протекать в зависимости от условий как чисто химически, так и с участием организмов, главным образом микроорганизмов (это организмы, не видимые невооруженным глазом, включающие микроскопические эукариоты: грибы, водоросли, простейшие и все прокариоты). Восстановительная часть круговорота серы осуществляется преимущественно биологическим путем с доминирующей ролью прокариот в этом процессе, при этом осуществляется восстановление атома серы из состояния максимального окисления (+ 6) до максимального восстановления (–2). Однако не всегда этот процесс происходит до конца, и в среде нередко обнаруживаются не полностью окисленные продукты: элементная сера, политионаты, сульфит.


Таким образом, цикл серы, так же как и круговорот веществ, невозможен без участия прокариот, обеспечивающих замкнутость цикла.

2. Восстановительная ветвь

Ассимиляция сульфата.

Сульфат используется в качестве источника серы почти всеми растениями и микроорганизмами. Сульфат при ассимиляции восстанавливается, чтобы сера могла включиться в органические соединения, так как в живых организмах сера встречается почти исключительно в восстановленной форме в виде сульфгидрильных (-SH) или дисульфидных (-S-S-) групп. В обоих случаях ассимилируется ровно столько питательных веществ, содержащих серу, сколько их необходимо для роста организма, поэтому никакие восстановленные продукты метаболизма серы не выделяются в окружающую среду. В результате биосинтеза сера включается в основном в состав серосодержащих аминокислот: цистин, цистеин, метионин. Вовлечение сульфатов в состав серосодержащих органических веществ носит название ассимиляционной сульфатредукции.

Превращение органических соединений серы с образованием H 2 S.

Для живых организмов сера доступна в основном в форме растворимых сульфатов или восстановленных органических соединений серы.

При минерализации органических серосодержащих соединений сера освобождается в неорганической восстановленной форме в виде H 2 S. В освобождении серы из органических серосодержащих соединений (продукты метаболизма живых существ, отмершие растительные и животные остатки) принимают участие сапрофитные микроорганизмы, способные к аммонификации. При аммонификации серосодержащие белки и нуклеиновые кислоты разлагаются с образованием СО 2 , мочевины, органических кислот, аминов и, что важно для цикла серы, H 2 S и меркаптанов (тиоспирты). Меркаптаны в аэробных условиях также окисляются с выделением H 2 S.

Разрушение белков микроорганизмами начинается как внеклеточный процесс. При этом белки гидролизуются протолитическими экзоферментами до более мелких молекул, способных проникать внутрь клетки и расщепляться внутриклеточными протеазами до аминокислот, которые могут подвергаться дальнейшему расщеплению.

Прямое образование H 2 S из сульфата и элементной серы.

Процессы образования в биосфере сероводорода связывают в основном с деятельностью сульфатредуцирующих бактерий, имеющих большое значение для глобального круговорота серы. Сульфатредуцирующие бактерии осуществляют диссимиляционную сульфатредукцию, представляющую собой анаэробное дыхание, при котором сульфат служит конечным акцептором электронов (вместо кислорода) при окислении органических веществ или молекулярного водорода. Поэтому энергетический тип обмена у сульфатредуцирующих бактерий часто называют сульфатным дыханием. Схематически процесс восстановления сульфатов при диссимиляционной сульфатредукции можно представить следующим образом: SO 4 2- →SO 3 2- →S 3 O 6 2- →S 2 O 3 2- →S 2- .

Ферментативная система, участвующая в восстановлении сульфата, состоит из двух частей: первая восстанавливает сульфат в сульфит в АТФ-зависимом процессе, а вторая восстанавливает сульфит в сульфид путем шестиэлектронного переноса. Именно последняя реакция, являясь диссимиляторной, снабжает клетку энергией.

Сульфатредуцирующие бактерии преимущественно облигатные анаэробные бактерии. Геохимическая роль сульфатредуцирующих бактерий чрезвычайно велика, поскольку благодаря их деятельности инертное соединение – сульфат в анаэробной зоне в больших масштабах вовлекается в биологический круговорот серы.

Деятельность сульфатредуцирующих бактерий особенно заметна в иле на дне прудов и ручьев, в болотах и вдоль побережья моря. Так как концентрация сульфата в морской воде относительно высока, восстановление сульфата – важный фактор минерализации органического вещества на морских отмелях. Признаками такой минерализации служит запах H 2 S и черный как смоль ил, в котором протекает этот процесс. Черный цвет ила обусловлен присутствием в нем больших количеств сульфида двухвалентного железа. Некоторые береговые области, где накопление органического вещества ведет к особенно интенсивному восстановлению сульфата, практически безжизненны из-за токсического действия H 2 S.

Сульфатредуцирующие бактерии – это физиологическая, а не систематическая группа, так как к ним относятся бактерии из разных таксономических групп, способные осуществлять один физиологический процесс – анаэробное дыхание в присутствии сульфатов, например бактерии родов Desulfovibrio (вибрионы), Desulfotomaculum (спорообразующие палочки). Среди сульфатредуцирующих организмов обнаружены и археи. Сульфатредуцирующие бактерии могут осуществлять рост за счет не только восстановления сульфатов, но и тиосульфата, сульфита, элементной серы и других соединений серы.

Для некоторых сульфатредуцирующих бактерий был показан преимущественно новый тип метаболизма серы. Эти бактерии способны получать энергию при росте на органических субстратах не только за счет сульфатредукции, но и в результате диспропорционирования тиосульфата, сульфита, дитионита с образованием сульфата и сульфида.

Суммарная реакция диспропорционирования тиосульфата:

S 2 O 3 2- + H 2 0 → SO 4 2- + HS - + H +

Go = – 21,9 кДж/моль S 2 O 3 2-

Суммарная реакция диспропорционирования сульфита:

4SO 3 2- + H + → 3SO 4 2- + HS -

Go = – 58,9 кДж/ мольSO 3 2-

Обнаружено, что бактерии, осуществляющие диспропорционирование тиосульфата, широко распространены в морских осадках.

Сероводород может образовываться также при восстановлении элементной серы. На сегодня известны два механизма образования сероводорода из молекулярной серы. В первом случае бактерии и археи используют молекулярную серу как акцептор электронов при анаэробном дыхании (диссимиляционная сероредукция), в ходе которого синтезируется АТФ. Диссимиляционная сероредукция – это ферментативный процесс, который осуществляют как мезофильные, так и термофильные прокариоты. Во втором случае микроорганизмы (дрожжи и прокариоты) используют серу лишь для сброса электронов, освобождающихся при брожении (облегченное брожение). Это футильный (холостой) сброс электронов, который не сопровождается синтезом АТФ.

Большое значение восстановление молекулярной серы в сероводород имеет именно для термофильных микроорганизмов, обитающих в гидротермах, где элементная сера является одной из наиболее значимых форм серы и где соединения серы имеют исходно вулканическое происхождение. Биоценозы гидротерм представляют собой уникальные сообщества живых существ. Развиваясь при высоких температурах (от 45–50 до 100°С), они образуются в основном прокариотами – бактериями и археями. Подавляющее большинство микроорганизмов, входящих в состав микробных сообществ гидротерм, не встречаются в других местах. Микробные сообщества гидротерм относят к наиболее древним биоценозам Земли.

3. Окислительная ветвь

Эта часть серного цикла может состоять как целиком из реакций неорганических соединений серы: S 2- → nS 2- → S 0 → S 2 O 3 2- → SO 3 2- → SO 4 2- , так и включать реакции органических форм. Атом серы органических сульфидов обычно окисляется после отделения в виде S 2 – по неорганическому пути, хотя возможен и чисто органический путь окисления, когда атом серы окисляется, находясь в составе органических соединений, например цистеин → цистин. Большинство реакций окисления серных соединений может протекать без участия микроорганизмов в присутствии сильных окислителей (H 2 O 2, O 3 , кислородные радикалы), однако микробное окисление гораздо более эффективно, особенно при низких концентрациях реагента.

Среди микроорганизмов, способных к окислению серных соединений, выделяются три основные физиологические группы: анаэробные фототрофные бактерии, аэробные и факультативно анаэробные литотрофные бактерии, археи и различные гетеротрофные микроорганизмы.

Анаэробные фототрофные бактерии.

Это специфическая группа бактерий, осуществляющая анаэробный (аноксигенный) фотосинтез, использующая в качестве доноров электронов различные восстановленные серные соединения вместо H 2 O, как это происходит при аэробном (оксигенном) фотосинтезе у растений, цианобактерий. Наиболее часто продуктами окисления восстановленных соединений серы являются SO 4 2- и S 0 , последняя может накапливаться внутриклеточно у некоторых фототрофных бактерий.

В систематическом отношении фототрофные бактерии делятся на несколько групп: серные и несерные пурпурные и зеленые бактерии, гелиобактерии, эритробактерии (рис. 123). Фототрофные бактерии пигментированы и могут быть окрашены в коричневый, зеленый, пурпурный цвета. Фототрофные бактерии, осуществляющие аноксигенный фотосинтез, содержат бактериохлорофилл и каротиноиды, которые и придают им соответствующую окраску. Данные бактерии доминируют в окислении сульфида в анаэробной водной толще неглубоких водоемов, таких, как озера, пруды, лагуны, минеральные источники, куда проникает достаточно света. Исключение оставляют эритробактерии, которые являются облигатными аэробами и осуществляют аноксигенный тип фотосинтеза в аэробных условиях.


Литотрофные сероокисляющие бактерии и археи. Серобактерии и тионовые бактерии.

Некоторые прокариоты в присутствии восстановленных соединений серы способны к литотрофному росту. При литотрофном росте восстановленные соединения серы или другие восстановленные неорганические соединения (NH 3 , H 2 , CO, Fe 2+) являются донорами электронов в энергетическом метаболизме, то есть при их окислении в электрон-транспортной цепи синтезируется АТФ. К литотрофному росту способны только прокариоты. У литотрофных серозависимых прокариот реакции окисления восстановленных соединений серы служат источником энергии. Окислительные реакции осуществляются при участии специфических ферментных систем. Окисление литотрофными прокариотами разных соединений серы и самой серы обычно ведет к образованию сульфатов. Однако не всегда этот процесс происходит до конца, и в среде нередко обнаруживаются не полностью окисленные продукты (S 0 , SO 3 2- , S 2 O 3 2- , S 4 O 6 2-). Группа литотрофных серозависимых прокариот в основном включает представителей тионовых бактерий, экстремально термоацидофильных серозависимых архей, водородных бактерий, бесцветных серобактерий, а также некоторых представителей пурпурных бактерий, способных к литотрофному росту за счет окисления серных соединений в темноте.

Давно известно, что в сероводородных источниках и других водоемах, содержащих сероводород, как правило, встречаются в большом количестве неокрашенные микроорганизмы, в клетках которых обнаруживаются капли серы. В местах, где концентрация сероводорода сравнительно невелика (меньше 50 мг/л), такие микроорганизмы, получившие название бесцветных серобактерий, часто образуют массовые скопления в виде пленок, белых налетов и других обрастаний. С.Н. Виноградский (1887) доказал, что сера, откладываемая в клетках одного из типичных представителей серобактерий, а именно Beggiatoa, образуется из сероводорода и может окисляться этим микроорганизмом до серной кислоты. В систематическом отношении бесцветные серобактерии, видимо, гетерогенная группа и далеко не все из описанных видов и даже родов можно считать твердо установленными. По морфологии, характеру движения, способу размножения и строению клеток ряд представителей бесцветных серобактерий, как многоклеточные, так и одноклеточные (Beggiatoa, Thiothrix, Thiospirillopsis, Thioploca, Achromatium) проявляют большое сходство с синезелеными водорослями. Некоторые исследователи, в частности Прингсхейм (Pringsheim, 1963), рассматривают эти микроорганизмы как бесцветные их варианты. Аналогом Beggiatoa считают сине-зеленую водоросль Oscillatoria, Thiothrix – Rivularia, Thiospirillopsis – Spirulina, a Achromatium похож на Synechococcus. Поскольку сине-зеленые водоросли сейчас причисляют к бактериям, то их сближение с бесцветными серобактериями становится все более обоснованным. Следует также отметить, что у некоторых сине-зеленых водорослей обнаружена способность откладывать в клетках серу, хотя один этот признак мало что дает для систематики микроорганизмов. Микроорганизмы, относящиеся к бесцветным серобактериям, встречаются и в пресных и в соленых водоемах. Некоторые из них хорошо растут при низкой температуре, другие (Thiospirillum pistiense) развиваются в термальных серных источниках при температуре более 50°С. Подвижные формы обладают хемотаксисом и могут перемещаться в места с оптимальным содержанием кислорода и сероводорода.

Большинство так называемых тионовых бактерий – типичные хемоавтотрофы, т.е. они используют восстановленные соединения серы не только как Н-доноры, но и в качестве источников энергии и способны расти на чисто минеральных средах, ассимилируя углекислоту. Такие бактерии были впервые выделены из воды Неаполитанского залива (Натансон, 1902) и получили название Thiobacillus (Бейеринк, 1904). К настоящему времени описано много видов автотрофных тиобацилл, выделенных из разных водоемов, почвы, а также из месторождений серы и разных металлов.

На основании некоторых, главным образом физиологических, особенностей (способность окислять различные соединения серы и другие неорганические субстраты, использовать органические соединения, расти в зависимости от значений рН среды, отношение к кислороду и др.) выделяют значительное число видов тиобацилл. Из них считаются наиболее твердо установленными следующие: Thiobacillus thioparus, Т. thiooxidans, Т. denitrificans, Т. thiocyanoxidans, Т. neapolitanus, Т. intermedius, Т. novellus, Т. ferrooxidanas. Все эти микроорганизмы растут на простых минеральных средах, куда часто вносят бикарбонат. Источником азота обычно служат соли аммония. Некоторые виды и штаммы способны ассимилировать как источники азота нитраты. Показана также способность отдельных представителей использовать мочевину и аминокислоты. Штаммы, выделенные из соленых водоемов, требуют для роста хлористого патрия, причем известны галофилы, способные расти в насыщенном растворе NaCl. Оптимальная температура для роста большинства выделенных микроорганизмов рода Thiobacillus около 30°С. Однако в природных условиях они встречаются в термальных источниках при температуре до 55°С. Недавно выделена чистая культура Thiobacillus sp. с оптимумом для роста при 50°С.

По отношению к кислотности среды тиобациллы подразделяются на организмы, хорошо растущие при нейтральной или даже щелочной реакции, и виды, являющиеся ацидофильными, т.е. развивающиеся в кислой среде и выдерживающие очень низкое значение рН.

К первой группе относятся такие виды, как: Т. thioparus, Т. denitrificans, Т. novellus, Т. thiocyanoxidans, Т. neapolitanus. Для этих микроорганизмов оптимальное значение рН приходится на область 6,0–9,0, а зона значений рН, при которых возможен их рост, – от 3,0–6,0 до 10,0–11,0, причем для разных видов и штаммов оптимальные значения рН и. область активной кислотности, в которой наблюдается их рост, могут заметно различаться.

Ко второй группе принадлежат Т. thiooxidans, Т. ferroxidans, Т. intermedius. Для этих микроорганизмов оптимальное значение рН 2,0–4,0, а рост возможен при рН от 0,5–2,0 до 5,0–7,0. Наиболее ацидофильными организмами являются два первых вида. Обе эти бактерии растут при значениях рН не более 5,0. В то же время показано, что Т. thiooxidans сохраняет жизнеспособность при значении рН, близком к 0, что соответствует 1,0 н. раствору серной кислоты. Это, пожалуй, самый ацидофильный микроорганизм, который известен исследователям.

Большинство тионовых бактерий растет только в присутствии кислорода, хотя рост некоторых представителей возможен при низком его содержании. Но известны и факультативные анаэробы. К ним относится Т. denitrificans. В аэробных условиях эти бактерии ведут окислительные процессы с участием молекулярного кислорода, в анаэробных переключаются на денитрификацию и восстанавливают нитраты до молекулярного азота. Интересно отметить, что ассимилировать нитраты как источники азота Т. denitrificans, подобно Paracoccus denitrificans, не может и требует для роста в качестве источника азота аммония.

Тионовые бактерии способны окислять такие соединения серы, как сероводород, сульфиды, сульфит, тиосульфат, тетратионат, тиоцианаг (роданид), дитионит, а также молекулярную серу, с образованием при полном их окисления сульфатов. Однако способности отдельных видов не вполне одинаковы. Кроме того, не всегда легко установить, какие именно соединения серы окисляются биологическим путем, так как многие из них неустойчивы при низком значении рН и могут также окисляться кислородом воздуха.

Все виды, растущие при нейтральной и щелочной реакции среды, как правило, окисляют сероводород, серу и тиосульфат. Характерным признаком Т. thiocyanoxidans является способность окислять роданид. На этом основании его выделяют в отдельный вид, так как по другим признакам этот микроорганизм похож на Т. thioparus. Такую ацидофильную бактерию, как Т. thiooxidans, культивируют обычно на среде, содержащей молекулярную серу. Вопрос о способности данного вида окислять сероводород и другие соединения серы окончательно не решен, так как в кислых условиях эти соединения неустойчивы. В отношении Т. ferroxidans есть данные, что эти бактерии могут окислять как молекулярную серу, так и различные ее соединения, а именно: сероводород, тиосульфат, дитионит, тетрасульфат, сульфит. Кроме того, Т. ferroxidans активно участвует в окислении сульфидов тяжелых металлов, которые нерастворимы в воде. К ним относятся такие минералы, как пирит (FeS2), халькопирит (CuFeS2), антимонит (SbS2), халькозин (Cu2S), кавеллин (CuS), пирротин (FeS), реальгар (AsS), виоларит (Ni2FeS4) и др. Остальные тионовые бактерии или такой возможностью не обладают, или она выражена слабо.

Отличительным свойством Т. ferroxidans является также способность окислять закисное железо в окисное. На этом основании данные бактерии могут рассматриваться как железобактерии, хотя относятся к роду Thiobacillus.

Как уже отмечалось выше, конечным продуктом окисления тионовыми бактериями молекулярной серы и различных ее соединений является сульфат. Если процесс идет таким образом, т.е. происходит полное окисление исходного субстрата, то результаты его отражают следующие уравнения. При окислении сероводорода:

При окислении серы и тиосульфата в аэробных условиях:


При окислении серы и тиосульфата Т. denitrificans в анаэробных условиях за счет использования нитратов:

При окислении Т. thiocyanoxidans роданида:

Однако нередко окисление идет не до конца, и в среде обнаруживаются различные не полностью окисленные продукты. Так при окислении сероводорода иногда появляется молекулярная сера, обнаружены также тиосульфат и политионаты. При окислении бактериями молекулярной серы констатировали появление тиосульфата и политионатов. Окисление тиосульфата также часто сопровождается образованием политионатов (тритионата, тетратионата, пеитатиопата) и элементарной серы. К числу не полностью окисленных продуктов относится и сульфит. Но не все из этих соединений могут являться результатом ферментативных процессов и действительно относятся к промежуточным продуктам окисления бактериями исходного субстрата. Некоторые из них образуются, видимо, чисто химическим путем или в результате побочных биологических реакций. Поэтому выяснение путей окисления микроорганизмами различных соединений серы весьма сложно, и далеко не все реакции до сих пор выяснены.

Очень мало еще данных о природе первого этапа превращения сульфида и не выяснено до конца, является сера прямым или побочным продуктом его окисления.

Весьма сложен вопрос об использовании бактериями элементарной серы, причем он имеет два аспекта: каким образом микроорганизмы воздействуют на это нерастворимое в воде вещество и как происходит сам процесс окисления.

В отношении механизма воздействия тиобацилл на серу существуют две точки зрения.

1. Для окисления бактериями серы необходим непосредственный контакт ее с клетками.

2. Сера используется бактериями после предварительного растворения в веществах липидной природы, выделяемых ими в среду.

При росте Т. thiooxidans на среде с молекулярной серой в среде обнаруживаются фосфолипиды. По одним данным – это фосфатидилинозит, по другим – несколько иные соединения (фосфатидил-N-метилэтанол, фосфатидилглицерин, дифосфатидилглицерин), причем их накопление совпадает с фазой активного роста культур. Тем не менее, считать доказанным второе предположение нельзя. Вполне вероятно, что для окисления серы бактериями важен и контакт ее с клетками, и выделение ими определенных веществ, которые «смачивают» серу.

Что касается пути окисления серы, то данные также довольно разноречивы. Наиболее вероятной считается следующая схема, которая приемлема также для окисления сероводорода:


Предполагается, что X либо производное глутатиона, с которым реагирует сероводород или сера, либо тиол, связанный с мембранами клеток. Образование тиосульфата рассматривается как неферментативный процесс, который может идти без участия бактерий.

Большое число исследований посвящено изучению окисления тиосульфата. Данные опытов, проведенных с целыми клетками и бесклеточными препаратами разных видов тиобацилл, позволяют считать, что начальный зтап превращения тиосульфата может быть связан либо с его восстановлением под действием редуктазы с образованием сероводорода и сульфита:

Либо с расщеплением до элементарной серы и сульфита:

либо, наконец, с окислением до тетратионата и затем превращением в тритионат и сульфит:

Предполагают, однако, что последний путь превращения тиосульфата не является основным. Что касается расщепления тиосульфата с образованием сульфита, то такую реакцию может осуществлять родоназа, связывающая серу в виде тиоцианата:


Она широко распространена не только у тионовых и других бактерий, но также у животных. Однако участвует ли этот фермент в метаболизме тиосульфата тионовыми бактериями, окончательно не установлено.

Значительно более исследован путь окисления сульфита. Работами, проведенными в лаборатории Пека с Т. thioparus, показано, что сульфит взаимодействует с аденозинмонофосфатом (АМФ), что приводит к образованию соединения, называемого аденилил сульфатом или аденозинфосфосульфатом (АФС). На следующем этапе происходит реакция между АФС и неорганическим фосфатом (Фн) с образованием аденозиндифосфата (АДФ) и освобождением свободного сульфата:

В результате действия фермента аденилаткиназы две молекулы АДФ могут превращаться в АТФ и снова давать АМФ:

Таким образом, данный путь окисления сульфита связан с получением энергии (АТФ) в результате так называемого субстратного фосфорилирования. В то же время процесс окисления сульфита может сопровождаться передачей электронов в дыхательную цепь, функционирование которой сопряжено с синтезом АТФ.

Для ряда тионовых бактерий, в том числе Т. thioparus, показано, что окисление сульфита возможно и без образования АФС, в результате действия сульфитокисляющего фермента, который обеспечивает передачу электронов в дыхательную цепь на уровне цитохромов:

Не исключено, что у одного и того же организма могут функционировать разные пути окисления сульфита и других соединений серы, и значение того или иного зависит от условий среды и других факторов. На основании имеющихся к настоящему времени данных окисление тионовыми бактериями разных соединений серы можно представить следующей обобщенной схемой.

Что касается компонентов электрон-транспортных систем тионовых бактерий, то, по всем данным, в состав их у разных видов всегда входят цитохромы типа с. Обнаружены также цитохромы типа b и, видимо, его вариант, называемый цитохромом о, а у некоторых представителей – цитохромы а и d. Кроме того, в электрон-транспортную систему входят, видимо, флавопротеиды и убихиноны. Но дыхательная цепь тионовых бактерий, обеспечивающая передачу электронов на кислород, как и у нитрифицирующих бактерий, сравнительно короткая, так как окисляемые субстраты имеют довольно высокий окислительно-восстановительный потенциал. Поэтому для данных микроорганизмов важное значение имеет энергозависимый перенос электрона против термодинамического градиента (обратный перепое электрона). Он обеспечивает образование восстановленного НАД, необходимого для ассимиляции углекислоты и других конструктивных процессов. Следует также отметить, что компоненты электронтранспортных систем и пути перепоса электронов не только могут иметь определеппые различия у разных представителей тиоповых бактерий, но и зависеть от характера окисляемого субстрата. Поэтому обобщенная схема (рис. 140) весьма условна.

По расчетам разных авторов, эффективность использования тионовыми бактериями свободной энергии составляет от 2 до 37%. Как и другие хемоавтотрофы, тионовые бактерии ассимилируют углекислоту в основном через цикл Кальвина. Но они обладают также способностью осуществлять другие реакции карбоксилирования, которые имеют важное значение для образования некоторых метаболитов.

Экстремально термоацидофильные серозависимые археи также способны к литотрофному росту в присутствии элементной серы и могут развиваться при 40–100 °C и рН 1–6, это обитатели гидротерм, кальдер вулканов.

Гетеротрофные сероокисляющие микроорганизмы (организмы, использующие для питания органические вещества).

О способности некоторых облигатно-гетеротрофных бактерий, дрожжей и микромицетов окислять различные неорганические соединения серы известно довольно давно, хотя значение этих реакций в метаболизме гетеротрофов до сих пор до конца не выяснено. Среди гетеротрофных сероокисляющих бактерий преобладают виды группы псевдомонад, осуществляющие неполное окисление тиосульфата до тетратионата.

Еще С.Н. Виноградский отметил (1887–1889), что бесцветные серобактерии могут расти в воде, содержащей очень небольшие количества органических веществ, и предполагал поэтому, что они способны усваивать углекислоту. На основании изучения физиологии разных штаммов Beggiatoa Прингсхейм считает, что среди них есть автотрофы, окисляющие сероводород и фиксирующие СО 2 , и есть представители, нуждающиеся в органических соединениях. Но и ряд гетеротрофных штаммов Beggiatoa в присутствии органических соединений окисляет сероводород, возможно, с получением энергии, т.е. они являются хемолитогетеротрофами. Наряду с бесцветными серобактериями известны типичные гетеротрофные микроорганизмы, участвующие в окислении сероводорода, молекулярной серы и тиосульфата. К числу таковых относятся представители Bacillus, Pseudomonas, Achromobacter, Sphaerotilus, а также актиномицетов, плесневых грибов (Penicillium luteum, Aspergillus niger), дрожжей и Alternaria. Некоторые из них, в частности нитчатая многоклеточная бактерия Sphaerotilus natans, в присутствии сероводорода откладывает в клетках серу. Другие (Pseudomonas aeruginosa, Ps. fluorescens, Achromobacter stuzeri) способны окислять тиосульфат до тетратионата (Na2S4O6). Отмечено также образование политионатов и сульфата при воздействии смешанных культур гетеротрофных микроорганизмов на элементарную серу. Механизм окисления и биологическое значение этого процесса для гетеротрофов остаются не выясненными. Некоторые гетеротрофные бесцветные серобактерии способны окислять соединения серы перекисью водорода, супероксидным радикалом, образующимся в клетках при окислении органических веществ: H 2 O 2 + H 2 S → S 0 + 2H 2 O. Физиологический смысл этого процесса – детоксикация токсичных продуктов неполного восстановления кислорода (H 2 O 2 , O 2-).

Полное окисление серных соединений до сульфата более характерно для микромицетов, обитающих в почвах, обогащенных элементной серой. Для некоторых видов родов микроскопических грибов Aspergillus, Penicillium, Trichoderma, Fusarium, Mucor и Auerobasidium показана способность к окислению элементной серы, тиосульфата и даже сульфидов металлов в сульфат, однако скорость такого окисления на один-два порядка ниже, чем у литотрофных бактерий.

сера циклический превращение микроорганизм

Заключение

В последние десятилетия природный цикл серы подвергается усиливающемуся антропогенному воздействию, приводя к накоплению токсических соединений серы и нарушению баланса природного цикла серы. В частности, в результате крупномасштабных выбросов серных соединений образуются двуокись серы, выделяемая ТЭЦ при сжигании органического топлива, сероводород и летучие органические сульфиды, выделяемые целлюлозно-бумажными и металлургическими предприятиями, а также при разложении муниципальных и сельскохозяйственных стоков. Эти соединения токсичны уже в микрограммовых концентрациях. Они способны отравлять воздух, влиять на атмосферную химию, вызывать дефицит растворенного в воде кислорода.

Поэтому использование прокариот, участвующих в превращении соединений серы, детоксикации токсичных соединений серы, представляется весьма актуальным. Кроме того, чрезвычайно высокая каталитическая активность микроорганизмов является причиной того, что они играют главную роль в химических превращениях, происходящих на поверхности Земли. Благодаря небольшим размерам микроорганизмы обладают по сравнению с животными и высшими растениями высоким соотношением поверхности и объема, что и приводит к быстрому обмену субстратов и продуктов выделения между клеткой и окружающей средой.

Важными факторами являются также высокая скорость их размножения в благоприятных условиях и широкая распространенность по всей биосфере. Однако, несмотря на исключительное значение прокариот в трансформации биогенных элементов, до сих пор масштабы деятельности прокариот в круговороте веществ, и в частности в цикле серы, до конца не оценены.

Литература

1. Грабович М.Ю. Участие прокариот в круговороте серы // Соросовский Образовательный Журнал, 1999, №12, с. 16–20.

2. Громов Б.В., Павленко Г.В. Экология бактерий. Л.: Изд-во ЛГУ, 1989. 248 c.

3. Громов Б.В. Удивительный мир архей // Соросовский Образовательный Журнал. 1997. №4. C. 23–26.

4. Кальдерные микроорганизмы / Под ред. Г.А. Заварзина. M.: Наука, 1989. 120 c.

5. Кондратьева Е.Н. Хемолитотрофы и метилотрофы. М.: Изд-во МГУ, 1983. 172 c.

6. Малахов В.В. Вестиментиферы – автотрофные животные // Соросовский Образовательный Журнал. 1997. №9. C. 18–26.

Прокариоты иным образом осуществляют фотосинтез, нежели растения. Бактерии используют в этом процессе пигмент бактериохлорин
и не выделяют кислород в окружающую среду. Фотоавтотрофные архебактерии осуществляют фотосинтез при помощи бактериородопсина, а цианобактерии помимо хлорофилла имеют еще дополнительно два других пигмента: фикоцианин и фикоэритрин. Указанные факты показывают, что природа предусмотрела для реализации синтеза первичного органического вещества несколько пигментов, которые существенно расширяют спектральный состав излучения, доступного для фотосинтеза. Среди прокариот значительно распространен хемосинтез. Кроме того, среди бактериальных организмов имеются азотофиксирующие формы: это единственная на нашей планете группа живых организмов, которые способны усваивать азот непосредственно из атмосферного воздуха и таким образом вовлекать молекулярный азот в биологический цикл.
Бактерии и синезеленые включают в состав органического вещества до 90% всего входящего в биогенный цикл азота; оставшиеся же 10% азота связываются грозовыми электрическими разрядами. Из сказанного следует, что важнейшей функцией прокариот в биосфере является вовлечение в круговорот элементов из косной (неживой) природы.
В то же время прокариоты имеют еще и другую важнейшую функцию, прямо противоположную первой: возвращение неорганических веществ в окружающую среду путем разрушения (минерализации) органических соединений. Гетеротрофные бактерии функционируют не только в почве и воде, но и в кишечнике очень многих животных, где они интенсивно воздействуют переводу сложных соединений углеводов в более простые формы.
На уровне биосферы в целом прокариоты, в первую очередь бактерии, обладают еще одной очень важной функцией - концентрационной. Исследованиями установлено, что микроорганизмы способны активно извлекать из окружающей среды определенные элементы даже при крайне низких их концентрациях. Например, в продуктах жизнедеятельности некоторых микроорганизмов содержание железа, ванадия, марганца и ряда других в сотни раз выше, чем в окружающей их среде. Деятельностью бактерий собственно и созданы естественные месторождения этих элементов.
Свойства и функции прокариот настолько разнообразны, что в принципе они способны создавать устойчиво функционирующие свойственные (т. е. только при своем участии) экосистемы. Недаром в истории жизни на Земле почти 2 млрд. лет она и была представлена прокариотами. "Именно цианобактерии первыми заселили атолл Бикини после ядерного взрыва и остров Суррей, возникший в 1963 году в результате извержения подводного вулкана южнее Исландии. Высокая устойчивость к внешним воздействиям (ряд видов прокариот выдерживают температуру выше 100° С, кислую среду с рН около 1, соленость с содержанием в растворе 20-30% галита NaCl) превращает эту группу в представителей живого вещества в самых экстремальных условиях" (Шилов И.А., 2000, с. 56)

Именно появление эукариотической клетки является одним из самых значимых событий биологической эволюции. Отличие эукариотических организмов от прокариотических состоит в более совершенной системе регуляции генома. А благодаря этому возросла приспособляемость одноклеточных организмов, их способность адаптироваться к меняющимся условиям среды без внесения наследственных изменений в геном. Благодаря возможности адаптироваться эукариоты смогли стать многоклеточными – в многоклеточном организме клетки с одним и тем же геномом, в зависимости от условий, образуют совершенно разные по морфологии и по функции ткани.

Этот ароморфоз произошел на рубеже Архея и Протерозоя (2,6 – 2,7 млрд. лет назад), что определили по биомаркерам – остаткам стероидных соединений, свойственных только эукариотическим клеткам. Появление эукариот совпадает по времени с кислородной революцией.

Считается общепризнанным, что эукариоты появились в результате симбиоза нескольких разновидностей прокариот. Видимо, митохондрии произошли от альфа-протеобактерий (аэробных эубактерий), пластиды – от цианобактерий, а цитоплазма – от неизвестной архебактерии. Пока еще нет общепринятой теории возникновения ядра, цитоскелета, а также жгутиков. Гипотезы возникновения жизни на Земле не внесли ясности в вопрос о возникновении клетки. Если о происхождении прокариотов практически нет никаких гипотез, правдоподобно описывающих их возникновение, то что касается происхождения эукариотических клеток, есть несколько точек зрения.

Основные гипотезы происхождения эукариот:

1. Симбиотическая гипотеза основана на двух концепциях. Согласно первой из этих концепций, самое фундаментальное разграничение в живой природе – это разграничение между бактериями и организмами, состоящими из клеток с истинными ядрами – протистами, животными, грибами и растениями. Вторая концепция состоит в том, что источником некоторых частей эукариотических клеток была эволюция симбиозов – формирование постоянных ассоциаций между организмами разных видов. Предполагается, что три класса органелл – митохондрии, реснички и фотосинтезирующие пластиды произошли от свободно живущих бактерий, которые в результате симбиоза были включены в состав клеток прокариот-хозяев. Эта теория в большой мере опирается на неодарвинистские представления, развитые генетиками, экологами, цитологами, которые связали Менделевскую генетику с Дарвиновской идеей естественного отбора. Она опирается также на молекулярную биологию, особенно на данные о структуре белков и последовательности аминокислот, на микропалеонтологию, изучающую наиболее ранние следы жизни на Земле, и на физику и химию атмосферы, поскольку эти науки имеют отношение к газам биологического происхождения.

2. Инвагинационная гипотеза говорит, что предковой формой эукариотической клетки был аэробный прокариот. Внутри находилось несколько геномов, прикреплявшихся к клеточной оболочке. Корпускулярные органеллы и ядро, возникли путем впячивания и отшнуровывания участков оболочки с последующей функциональной специализацией в ядро, митохондрий, хлоропласты. Потом в процессе эволюции произошло усложнение ядерного генома и появилась система цитоплазматических мембран. Эта гипотеза объясняет наличие в оболочках ядра, митохондрий, хлоропластов, двух мембран. Но она встречается с трудностями в объяснении различий в деталях процесса биосинтеза белка в корпускулярных органеллах и цитоплазме эукариотической клетки. В митохондриях и хлоропластах этот процесс в точности соответствует таковому в современных прокариотических клетках.

Происхождение эукариотической клетки согласно симбиотической (I) и инвагинационной (II) гипотезам:

1 - анаэробный прокариот (клетка-хозяин), 2 - прокариоты, имеющие митохондрии, 3 - сине-зеленая водоросль (презумптивный хлоропласт), 4 - сиирохетообразная бактерия (презумпгивный жгутик), 5 - примитивный эукариот со жгутиком, 6 - растительная клетка, 7 - животная клетка со жгутиком, 8 - аэробный прокариот (презумптивная митохондрия), 9 - аэробный прокариот (клетка-родоначальница согласно гипотезе II), 10 - инвагинации клеточной оболочки, давшие ядро и митохондрии, 11 - примитивный эукариот 12 - впячивание клеточной оболочки, давшее хлоропласт, 13 - растительная клетка; а -ДНК прокариотической клетки, б - митохондрия, в -ядро эукариотической клетки, г - жгутик, д - хлоропласт.

Имеющихся данных пока недостаточно для того, чтобы отдать предпочтение какой-то одной из гипотез или выработать новую, которая устроила бы большинство ученых, но в последние годы удалось убедительно доказать симбиогенетическую теорию происхождения эукариотической клетки.

Эволюционные возможности клеток эукариотического типа выше, чем прокариотического. Ведущая роль здесь принадлежит ядерному геному эукариот, который превосходит по размерам геном прокариот. Важные отличия заключаются в диплоидности эукариотических клеток благодаря наличию в ядрах двух комплектов генов, а также в многократном повторении некоторых генов.

Усложняется механизм регуляции жизнедеятельности клетки, что проявилось в увеличении относительного количества регуляторных генов, замене кольцевых «голых» молекул ДНК прокариот хромосомами, в которых ДНК соединена с белками.

Аэробное дыхание также послужило предпосылкой для развития многоклеточных форм. Сами эукариотические клетки появились на Земле после того, как концентрация O 2 в атмосфере достигла 1% (точка Пастера). А эта концентрация –необходимое условием аэробного дыхания.

Известно, что каждая эукариотическая клетка содержит геномы различного происхождения: в клетках животных и грибов это геномы ядра и митохондрий, а в клетках растений – также и пластид. Небольшая кольцевая ДНК содержится и в базальном тельце жгутиков эукариотических клеток.

Согласно методу молекулярных часов эукариоты возникли тогда же, когда и прокариоты. Но очевидно же, что в течение значительной части истории Земли на ней доминировали прокариоты. Первые клетки, которые соответствуют эукариотическим размерам (акритархи), имеют возраст 3 млрд. лет, но их природа все еще остается неясной. Почти несомненные остатки эукариот имеют возраст около 2 млрд. лет. И лишь после кислородной революции на поверхности планеты сложились благоприятные условия для эукариот (около 1 млрд. лет назад).

Скорее всего, основным предком эукариотических клеток стали архебактерии, которые перешли к питанию путем заглатывания пищевых частиц. Изменение формы клетки, необходимое для такого заглатывания, обеспечивал состоящий из актина и миозина цитоскелет. Наследственный аппарат такой клетки переместился вглубь от ее изменчивой поверхности, сохранив при этом свою связь с мембраной. А уже это послужило причиной возникновения ядерной оболочки с ядерными порами.

Поглощенные клеткой-хозяином бактерии могли продолжить свое существование внутри нее. Так, предками митохондрий стала группа фотосинтезирующих бактерий – пурпурные альфапротеобактерии. Внутри клетки-хозяина они утратили способность к фотосинтезу и приняли на себя окисление органических веществ. Благодаря им эукариотические клетки стали аэробными. Симбиозы с другими фотосинтезирующими клетками стали причиной приобретения растительными клетками пластид. Возможно, жгутики эукариотических клеток произошли в результате симбиоза клеток-хозяев с бактериями, которые были способны к извивающимся движениям.

Наследственный аппарат эукариотических клеток был устроен примерно так же, как у прокариот. Но в связи с необходимостью управления более крупной и сложной клеткой, позже изменилась организация хромосом, а ДНК оказалась связана с белками-гистонами. Прокариотическая организация сохранилась у геномов внутриклеточных симбионтов.

В результате различных актов симбиогенеза возникли различные группы эукариотических организмов: эукариотической клетка + цианобактерия = красные водоросли; эукариотическая клетка + бактерия-прохлорофита = зеленые водоросли. Даже хлоропласты золотистых, диатомовых, бурых и криптомонадовых водорослей возникли в результате двух последовательных симбиозов, о чем говорит наличие у них 4 мембран.

Появление эукариот было приурочено к такому периоду истории биосферы, когда условия были особенно нестабильны и непредсказуемы, когда приспособительная стратегия прокариот (быстрое мутирование, горизонтальный обмен генами и отбор устойчивых клонов) оказалась слишком расточительной и недостаточно эффективной. В такой ситуации большое преимущество могла получить принципиально более универсальная и экономичная адаптивная стратегия, основанная на развитии целесообразной модификационной изменчивости.

Пожалуй, становление эукариот и развитие у них полового процесса сделали структуру изменчивости и биоразнообразия более дискретной и «управляемой» – это должно было привести к ускоренному росту биоразнообразия и к повышению эволюционной пластичности и экологической толерантности видов, сообществ и биоты в целом.

Появление эукариот можно по праву назвать «эталонным» ароморфозом. В этом событии предельно ярко проявилась общая прогрессивная направленность биологической эволюции. Прогресс выразился не только в усложнении организации, расширении суммарной адаптивной зоны жизни, росте биомассы и численности, повышении автономности организмов но и в повышении устойчивости живых систем.

На примере эукариот отчетливо показано, что появление новых форм жизни следует рассматривать не как результат эволюции каких-то отдельных филетических линий или клад, а как закономерный и неизбежный эффект развития систем высшего порядка – сообществ, биосферы и, возможно, всей планеты как единого целого.

Используемые источники:

А. В. Марков, А. М. Куликов. Происхождение эукариот как результат интеграционных процессов в микробном сообществе

А. В. Марков. Проблема происхождения эукариот

М. В. Ларина. Гипотезы происхождения эукариотических клеток. Возникновения многоклеточности

Рассказать друзьям